Suppr超能文献

内生昆虫病原真菌介导昆虫源氮向植物转移的普遍性:土壤氮循环的一个新分支

Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle.

作者信息

Behie Scott W, Bidochka Michael J

机构信息

Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.

出版信息

Appl Environ Microbiol. 2014 Mar;80(5):1553-60. doi: 10.1128/AEM.03338-13. Epub 2013 Dec 13.

Abstract

The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with (15)N-labeled nitrogen, and we tracked the incorporation of (15)N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.

摘要

土壤中共生氮转移的研究主要集中在固氮细菌上。维管植物会因昆虫取食而损失大量氮素。此前,我们发现植物能够通过与内生昆虫病原真菌罗伯茨绿僵菌建立伙伴关系,从昆虫身上重新获取氮素。也就是说,罗伯茨绿僵菌的内生能力和昆虫致病性相互关联,使得该真菌成为向植物宿主提供昆虫源氮素的渠道。在此,我们评估了这种氮转移在5种绿僵菌中的普遍性,这些绿僵菌包括宿主范围广的(罗伯茨绿僵菌、布氏绿僵菌和贵州绿僵菌)和宿主范围窄的(蝗绿僵菌和黄绿绿僵菌),以及昆虫病原真菌球孢白僵菌和蜡蚧轮枝菌。给昆虫注射(15)N标记的氮,然后我们在土壤微观环境中,在这些真菌存在的情况下,追踪(15)N在两种双子叶植物菜豆(Phaseolus vulgaris)和大豆(Glycine max)以及两种单子叶植物柳枝稷(Panicum virgatum)和小麦(Triticum aestivum)中的掺入情况。所有绿僵菌物种和球孢白僵菌都表现出向植物转移氮素的能力,不过程度不同,而蜡蚧轮枝菌则没有。这些真菌的内生关联提高了植物的整体生产力。我们还表明,在微生物竞争可能很高的田间,罗伯茨绿僵菌能够将昆虫源氮素转移给植物。绿僵菌属和球孢白僵菌在全球分布广泛,在土壤中含量很高,可能在昆虫氮素向植物群落的生态循环中发挥重要作用。

相似文献

4
Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization.内生真菌感染的初始阶段涉及根际定殖。
Microbiology (Reading). 2018 Dec;164(12):1531-1540. doi: 10.1099/mic.0.000729. Epub 2018 Oct 12.
8
Root colonization by endophytic insect-pathogenic fungi.内生昆虫病原真菌的定殖
J Appl Microbiol. 2021 Feb;130(2):570-581. doi: 10.1111/jam.14503. Epub 2019 Dec 2.
10
Insect Pathogenic Fungi as Endophytes.作为内生菌的昆虫病原真菌
Adv Genet. 2016;94:107-35. doi: 10.1016/bs.adgen.2015.12.004. Epub 2016 Feb 15.

引用本文的文献

5
What are the 100 most cited fungal genera?被引用次数最多的100个真菌属有哪些?
Stud Mycol. 2024 Jul;108:1-411. doi: 10.3114/sim.2024.108.01. Epub 2024 Jul 15.
10
Filtration effect of mycoderm on bacteria and its transport function on nitrogen.菌皮对细菌的过滤作用及其对氮的输移功能。
Microbiol Spectr. 2024 Jan 11;12(1):e0117923. doi: 10.1128/spectrum.01179-23. Epub 2023 Dec 15.

本文引用的文献

7
Evolution of entomopathogenicity in fungi.真菌中昆虫致病性的进化
J Invertebr Pathol. 2008 Jul;98(3):262-6. doi: 10.1016/j.jip.2008.02.017. Epub 2008 Mar 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验