Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France.
Plant Physiol. 2014 Feb;164(2):790-804. doi: 10.1104/pp.113.229997. Epub 2013 Dec 13.
Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the reaction centers by increasing thermal energy dissipation at the level of the phycobilisome (PB), the extramembranous light-harvesting antenna. This mechanism is triggered by the photoactive Orange Carotenoid Protein (OCP), which acts both as the photosensor and the energy quencher. The OCP binds the core of the PB. The structure of this core differs in diverse cyanobacterial strains. Here, using two isolated OCPs and four classes of PBs, we demonstrated that differences exist between OCPs related to PB binding, photoactivity, and carotenoid binding. Synechocystis PCC 6803 (hereafter Synechocystis) OCP, but not Arthrospira platensis PCC 7345 (hereafter Arthrospira) OCP, can attach echinenone in addition to hydroxyechinenone. Arthrospira OCP binds more strongly than Synechocystis OCP to all types of PBs. Synechocystis OCP can strongly bind only its own PB in 0.8 m potassium phosphate. However, if the Synechocystis OCP binds to the PB at very high phosphate concentrations (approximately 1.4 m), it is able to quench the fluorescence of any type of PB, even those isolated from strains that lack the OCP-mediated photoprotective mechanism. Thus, the determining step for the induction of photoprotection is the binding of the OCP to PBs. Our results also indicated that the structure of PBs, at least in vitro, significantly influences OCP binding and the stabilization of OCP-PB complexes. Finally, the fact that the OCP induced large fluorescence quenching even in the two-cylinder core of Synechococcus elongatus PBs strongly suggested that OCP binds to one of the basal allophycocyanin cylinders.
蓝藻已经开发出一种光保护机制,通过增加光捕获天线藻胆体(PB)的热能耗散来减少到达反应中心的能量,藻胆体是一种膜外的光捕获天线。这种机制是由光活性橙色类胡萝卜素蛋白(OCP)触发的,OCP 既是光传感器又是能量猝灭剂。OCP 与 PB 核心结合。这个核心的结构在不同的蓝藻菌株中有所不同。在这里,我们使用两个分离的 OCP 和四个类 PB,证明了与 PB 结合、光活性和类胡萝卜素结合相关的 OCP 之间存在差异。聚球藻 PCC 6803(以下简称聚球藻)OCP,但不是节旋藻 PCC 7345(以下简称节旋藻)OCP,可以结合除了羟基玉米黄质之外的echinenone。节旋藻 OCP 比聚球藻 OCP 更强烈地与所有类型的 PB 结合。聚球藻 OCP 只能在 0.8 m 磷酸钾中强烈结合其自身的 PB。然而,如果聚球藻 OCP 在非常高的磷酸盐浓度(约 1.4 m)下与 PB 结合,它能够猝灭任何类型的 PB 的荧光,即使是那些从缺乏 OCP 介导的光保护机制的菌株中分离出来的 PB。因此,诱导光保护的决定步骤是 OCP 与 PB 的结合。我们的结果还表明,至少在体外,PB 的结构显著影响 OCP 结合和 OCP-PB 复合物的稳定性。最后,OCP 甚至在聚球藻的双圆柱 PB 的两个圆柱核心中引起了大量荧光猝灭的事实强烈表明 OCP 结合到一个基底层别藻蓝蛋白圆柱中。