Suppr超能文献

橙胡萝卜素蛋白的光循环隐藏了不同的中间体以及类胡萝卜素和蛋白质成分的非同步变化。

The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components.

机构信息

Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, 119991, Moscow, Russia.

A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.

出版信息

Sci Rep. 2017 Nov 14;7(1):15548. doi: 10.1038/s41598-017-15520-4.

Abstract

The 35-kDa Orange Carotenoid Protein (OCP) is responsible for photoprotection in cyanobacteria. It acts as a light intensity sensor and efficient quencher of phycobilisome excitation. Photoactivation triggers large-scale conformational rearrangements to convert OCP from the orange OCP state to the red active signaling state, OCP, as demonstrated by various structural methods. Such rearrangements imply a complete, yet reversible separation of structural domains and translocation of the carotenoid. Recently, dynamic crystallography of OCP suggested the existence of photocycle intermediates with small-scale rearrangements that may trigger further transitions. In this study, we took advantage of single 7 ns laser pulses to study carotenoid absorption transients in OCP on the time-scale from 100 ns to 10 s, which allowed us to detect a red intermediate state preceding the red signaling state, OCP. In addition, time-resolved fluorescence spectroscopy and the assignment of carotenoid-induced quenching of different tryptophan residues derived thereof revealed a novel orange intermediate state, which appears during the relaxation of photoactivated OCP to OCP. Our results show asynchronous changes between the carotenoid- and protein-associated kinetic components in a refined mechanistic model of the OCP photocycle, but also introduce new kinetic signatures for future studies of OCP photoactivity and photoprotection.

摘要

35kDa 橙黄色类胡萝卜素蛋白(OCP)负责蓝细菌的光保护。它作为光强传感器和藻胆体激发的有效猝灭剂。光激活触发大规模构象重排,将 OCP 从橙色 OCP 状态转换为红色活性信号状态 OCP,这已通过各种结构方法证明。这种重排意味着结构域的完全但可逆的分离和类胡萝卜素的易位。最近,OCP 的动态晶体学研究表明存在具有小规模重排的光循环中间体,这可能引发进一步的转变。在这项研究中,我们利用单个 7ns 激光脉冲在 100ns 到 10s 的时间范围内研究 OCP 中类胡萝卜素吸收的瞬变,这使我们能够检测到红色信号状态 OCP 之前的红色中间状态。此外,时间分辨荧光光谱和由此衍生的不同色氨酸残基的类胡萝卜素诱导猝灭的分配揭示了一种新的橙色中间状态,该状态出现在光激活 OCP 弛豫到 OCP 的过程中。我们的结果表明,在 OCP 光循环的精细机制模型中,类胡萝卜素和蛋白质相关的动力学成分之间存在异步变化,但也为未来 OCP 光活性和光保护的研究引入了新的动力学特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7014/5686206/7bb35dede9af/41598_2017_15520_Fig1_HTML.jpg

相似文献

3
Orange carotenoid protein burrows into the phycobilisome to provide photoprotection.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1655-62. doi: 10.1073/pnas.1523680113. Epub 2016 Mar 8.
5
The Unique Protein-to-Protein Carotenoid Transfer Mechanism.
Biophys J. 2017 Jul 25;113(2):402-414. doi: 10.1016/j.bpj.2017.06.002.
6
Binding of red form of Orange Carotenoid Protein (OCP) to phycobilisome is not sufficient for quenching.
Biochim Biophys Acta Bioenerg. 2020 Mar 1;1861(3):148155. doi: 10.1016/j.bbabio.2020.148155. Epub 2020 Jan 11.
7
Stages of OCP-FRP Interactions in the Regulation of Photoprotection in Cyanobacteria, Part 1: Time-Resolved Spectroscopy.
J Phys Chem B. 2023 Mar 9;127(9):1890-1900. doi: 10.1021/acs.jpcb.2c07189. Epub 2023 Feb 17.
8
The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP.
Biochim Biophys Acta Bioenerg. 2017 Jan;1858(1):1-11. doi: 10.1016/j.bbabio.2016.10.005. Epub 2016 Oct 15.
10
Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism.
Photosynth Res. 2017 Sep;133(1-3):327-341. doi: 10.1007/s11120-017-0353-3. Epub 2017 Feb 17.

引用本文的文献

1
Two-Photon-Driven Photoprotection Mechanism in Echinenone-Functionalized Orange Carotenoid Protein.
J Am Chem Soc. 2025 Feb 5;147(5):4100-4110. doi: 10.1021/jacs.4c13341. Epub 2025 Jan 21.
2
Engineering hydrogen bonding at tyrosine-201 in the orange carotenoid protein using halogenated analogues.
Photosynth Res. 2025 Jan 20;163(1):10. doi: 10.1007/s11120-024-01133-2.
3
How orange carotenoid protein controls the excited state dynamics of canthaxanthin.
Chem Sci. 2023 Sep 22;14(40):11158-11169. doi: 10.1039/d3sc02662k. eCollection 2023 Oct 18.
4
Light-induced infrared difference spectroscopy on three different forms of orange carotenoid protein: focus on carotenoid vibrations.
Photochem Photobiol Sci. 2023 Jun;22(6):1379-1391. doi: 10.1007/s43630-023-00384-7. Epub 2023 Feb 28.
5
Is orange carotenoid protein photoactivation a single-photon process?
Biophys Rep (N Y). 2022 Aug 23;2(3):100072. doi: 10.1016/j.bpr.2022.100072. eCollection 2022 Sep 14.
6
Protein control of photochemistry and transient intermediates in phytochromes.
Nat Commun. 2022 Nov 11;13(1):6838. doi: 10.1038/s41467-022-34640-8.
7
The role of the local environment on the structural heterogeneity of carotenoid β-ionone rings.
Photosynth Res. 2023 Apr;156(1):3-17. doi: 10.1007/s11120-022-00955-2. Epub 2022 Sep 5.
8
Oligomerization processes limit photoactivation and recovery of the orange carotenoid protein.
Biophys J. 2022 Aug 2;121(15):2849-2872. doi: 10.1016/j.bpj.2022.07.004. Epub 2022 Jul 6.

本文引用的文献

1
The Unique Protein-to-Protein Carotenoid Transfer Mechanism.
Biophys J. 2017 Jul 25;113(2):402-414. doi: 10.1016/j.bpj.2017.06.002.
2
Raman Optical Activity Reveals Carotenoid Photoactivation Events in the Orange Carotenoid Protein in Solution.
J Am Chem Soc. 2017 Aug 2;139(30):10456-10460. doi: 10.1021/jacs.7b05193. Epub 2017 Jul 21.
3
Photoactivation mechanism of a carotenoid-based photoreceptor.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6286-6291. doi: 10.1073/pnas.1700956114. Epub 2017 May 30.
4
A Molecular Mechanism for Nonphotochemical Quenching in Cyanobacteria.
Biochemistry. 2017 Jun 6;56(22):2812-2823. doi: 10.1021/acs.biochem.7b00202. Epub 2017 May 25.
5
Deletion of the short N-terminal extension in OCP reveals the main site for FRP binding.
FEBS Lett. 2017 Jun;591(12):1667-1676. doi: 10.1002/1873-3468.12680. Epub 2017 Jun 1.
6
Biophysical modeling of in vitro and in vivo processes underlying regulated photoprotective mechanism in cyanobacteria.
Photosynth Res. 2017 Sep;133(1-3):261-271. doi: 10.1007/s11120-017-0377-8. Epub 2017 Apr 6.
7
Interaction of the signaling state analog and the apoprotein form of the orange carotenoid protein with the fluorescence recovery protein.
Photosynth Res. 2018 Mar;135(1-3):125-139. doi: 10.1007/s11120-017-0346-2. Epub 2017 Feb 24.
8
Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism.
Photosynth Res. 2017 Sep;133(1-3):327-341. doi: 10.1007/s11120-017-0353-3. Epub 2017 Feb 17.
9
Fluorescent Labeling Preserving OCP Photoactivity Reveals Its Reorganization during the Photocycle.
Biophys J. 2017 Jan 10;112(1):46-56. doi: 10.1016/j.bpj.2016.11.3193.
10
The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP.
Biochim Biophys Acta Bioenerg. 2017 Jan;1858(1):1-11. doi: 10.1016/j.bbabio.2016.10.005. Epub 2016 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验