Dong Yuwen, Rivera Daniel E, Downs Danielle S, Savage Jennifer S, Thomas Diana M, Collins Linda M
Control Systems Engineering Laboratory (CSEL), School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA.
Proc Am Control Conf. 2013:1970-1975. doi: 10.1109/acc.2013.6580124.
Excessive gestational weight gain (GWG) represents a major public health issue. In this paper, we pursue a control engineering approach to the problem by applying model predictive control (MPC) algorithms to act as decision policies in the intervention for assigning optimal intervention dosages. The intervention components consist of education, behavioral modification and active learning. The categorical nature of the intervention dosage assignment problem dictates the need for hybrid model predictive control (HMPC) schemes, ultimately leading to improved outcomes. The goal is to design a controller that generates an intervention dosage sequence which improves a participant's healthy eating behavior and physical activity to better control GWG. An improved formulation of self-regulation is also presented through the use of Internal Model Control (IMC), allowing greater flexibility in describing self-regulatory behavior. Simulation results illustrate the basic workings of the model and demonstrate the benefits of hybrid predictive control for optimized GWG adaptive interventions.
孕期体重过度增加(GWG)是一个重大的公共卫生问题。在本文中,我们通过应用模型预测控制(MPC)算法作为决策策略来解决这个问题,以在干预中分配最佳干预剂量。干预组成部分包括教育、行为改变和主动学习。干预剂量分配问题的分类性质决定了需要混合模型预测控制(HMPC)方案,最终带来更好的结果。目标是设计一个控制器,生成一个干预剂量序列,改善参与者的健康饮食行为和身体活动,以更好地控制孕期体重过度增加。还通过使用内模控制(IMC)提出了一种改进的自我调节公式,在描述自我调节行为方面具有更大的灵活性。仿真结果说明了该模型的基本工作原理,并证明了混合预测控制对优化孕期体重过度增加适应性干预的益处。