Suppr超能文献

使用控制系统工程优化自适应移动健康干预的教程。

Tutorial for Using Control Systems Engineering to Optimize Adaptive Mobile Health Interventions.

作者信息

Hekler Eric B, Rivera Daniel E, Martin Cesar A, Phatak Sayali S, Freigoun Mohammad T, Korinek Elizabeth, Klasnja Predrag, Adams Marc A, Buman Matthew P

机构信息

Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA, United States.

School of Nutrition & Health Promotion, Arizona State University, Phoenix, AZ, United States.

出版信息

J Med Internet Res. 2018 Jun 28;20(6):e214. doi: 10.2196/jmir.8622.

Abstract

BACKGROUND

Adaptive behavioral interventions are individualized interventions that vary support based on a person's evolving needs. Digital technologies enable these adaptive interventions to function at scale. Adaptive interventions show great promise for producing better results compared with static interventions related to health outcomes. Our central thesis is that adaptive interventions are more likely to succeed at helping individuals meet and maintain behavioral targets if its elements can be iteratively improved via data-driven testing (ie, optimization). Control systems engineering is a discipline focused on decision making in systems that change over time and has a wealth of methods that could be useful for optimizing adaptive interventions.

OBJECTIVE

The purpose of this paper was to provide an introductory tutorial on when and what to do when using control systems engineering for designing and optimizing adaptive mobile health (mHealth) behavioral interventions.

OVERVIEW

We start with a review of the need for optimization, building on the multiphase optimization strategy (MOST). We then provide an overview of control systems engineering, followed by attributes of problems that are well matched to control engineering. Key steps in the development and optimization of an adaptive intervention from a control engineering perspective are then summarized, with a focus on why, what, and when to do subtasks in each step.

IMPLICATIONS

Control engineering offers exciting opportunities for optimizing individualization and adaptation elements of adaptive interventions. Arguably, the time is now for control systems engineers and behavioral and health scientists to partner to advance interventions that can be individualized, adaptive, and scalable. This tutorial should aid in creating the bridge between these communities.

摘要

背景

适应性行为干预是根据个人不断变化的需求提供不同支持的个性化干预措施。数字技术使这些适应性干预能够大规模发挥作用。与与健康结果相关的静态干预相比,适应性干预在产生更好结果方面显示出巨大潜力。我们的核心论点是,如果适应性干预的要素能够通过数据驱动的测试(即优化)进行迭代改进,那么它在帮助个人实现并维持行为目标方面更有可能取得成功。控制系统工程是一门专注于随时间变化的系统中的决策制定的学科,拥有大量可用于优化适应性干预的方法。

目的

本文旨在提供一个入门教程,介绍在使用控制系统工程设计和优化适应性移动健康(mHealth)行为干预时何时以及如何操作。

概述

我们首先回顾基于多阶段优化策略(MOST)的优化需求。然后概述控制系统工程,接着介绍与控制工程非常匹配的问题的属性。然后从控制工程的角度总结适应性干预开发和优化的关键步骤,重点关注每个步骤中执行子任务的原因、内容和时间。

启示

控制工程为优化适应性干预的个性化和适应性要素提供了令人兴奋的机会。可以说,现在是控制系统工程师与行为和健康科学家合作推进可个性化、适应性强且可扩展的干预措施的时候了。本教程应有助于在这些群体之间架起桥梁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eee/6043734/2b3d11f7c7e6/jmir_v20i6e214_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验