Schlagowski A I, Singh F, Charles A L, Gali Ramamoorthy T, Favret F, Piquard F, Geny B, Zoll J
University of Strasbourg, Faculty of Medicine, FMTS, EA 3072, Strasbourg, France;
J Appl Physiol (1985). 2014 Feb 15;116(4):364-75. doi: 10.1152/japplphysiol.01177.2013. Epub 2013 Dec 12.
The effects of mitochondrial uncoupling on skeletal muscle mitochondrial adaptation and maximal exercise capacity are unknown. In this study, rats were divided into a control group (CTL, n = 8) and a group treated with 2,4-dinitrophenol, a mitochondrial uncoupler, for 28 days (DNP, 30 mg·kg(-1)·day(-1) in drinking water, n = 8). The DNP group had a significantly lower body mass (P < 0.05) and a higher resting oxygen uptake (Vo2, P < 0.005). The incremental treadmill test showed that maximal running speed and running economy (P < 0.01) were impaired but that maximal Vo2 (Vo2max) was higher in the DNP-treated rats (P < 0.05). In skinned gastrocnemius fibers, basal respiration (V0) was higher (P < 0.01) in the DNP-treated animals, whereas the acceptor control ratio (ACR, Vmax/V0) was significantly lower (P < 0.05), indicating a reduction in OXPHOS efficiency. In skeletal muscle, DNP activated the mitochondrial biogenesis pathway, as indicated by changes in the mRNA expression of PGC1-α and -β, NRF-1 and -2, and TFAM, and increased the mRNA expression of cytochrome oxidase 1 (P < 0.01). The expression of two mitochondrial proteins (prohibitin and Ndufs 3) was higher after DNP treatment. Mitochondrial fission 1 protein (Fis-1) was increased in the DNP group (P < 0.01), but mitofusin-1 and -2 were unchanged. Histochemical staining for NADH dehydrogenase and succinate dehydrogenase activity in the gastrocnemius muscle revealed an increase in the proportion of oxidative fibers after DNP treatment. Our study shows that mitochondrial uncoupling induces several skeletal muscle adaptations, highlighting the role of mitochondrial coupling as a critical factor for maximal exercise capacities. These results emphasize the importance of investigating the qualitative aspects of mitochondrial function in addition to the amount of mitochondria.
线粒体解偶联对骨骼肌线粒体适应性和最大运动能力的影响尚不清楚。在本研究中,大鼠被分为对照组(CTL,n = 8)和用线粒体解偶联剂2,4-二硝基苯酚处理28天的组(DNP,饮用水中30 mg·kg⁻¹·天⁻¹,n = 8)。DNP组体重显著降低(P < 0.05),静息摄氧量较高(Vo2,P < 0.005)。递增式跑步机测试表明,DNP处理的大鼠最大跑步速度和跑步经济性受损(P < 0.01),但最大Vo2(Vo2max)较高(P < 0.05)。在去皮肤的腓肠肌纤维中,DNP处理的动物基础呼吸(V0)较高(P < 0.01),而接受体控制率(ACR,Vmax/V0)显著较低(P < 0.05),表明氧化磷酸化效率降低。在骨骼肌中,DNP激活了线粒体生物发生途径,如PGC1-α和-β、NRF-1和-2以及TFAM的mRNA表达变化所示,并增加了细胞色素氧化酶1的mRNA表达(P < 0.01)。DNP处理后两种线粒体蛋白(抑制素和Ndufs 3)的表达较高。DNP组线粒体分裂1蛋白(Fis-1)增加(P < 0.01),但线粒体融合蛋白-1和-2未改变。腓肠肌中NADH脱氢酶和琥珀酸脱氢酶活性的组织化学染色显示,DNP处理后氧化纤维的比例增加。我们的研究表明,线粒体解偶联诱导了几种骨骼肌适应性变化,突出了线粒体偶联作为最大运动能力关键因素的作用。这些结果强调了除线粒体数量外,研究线粒体功能质量方面的重要性。