Bayona-Bafaluy M Pilar, Garrido-Pérez Nuria, Meade Patricia, Iglesias Eldris, Jiménez-Salvador Irene, Montoya Julio, Martínez-Cué Carmen, Ruiz-Pesini Eduardo
Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain.
Redox Biol. 2021 May;41:101871. doi: 10.1016/j.redox.2021.101871. Epub 2021 Jan 22.
Down syndrome is the most common genomic disorder of intellectual disability and is caused by trisomy of chromosome 21. Several genes in this chromosome repress mitochondrial biogenesis. The goal of this study was to evaluate whether early overexpression of these genes may cause a prenatal impairment of oxidative phosphorylation negatively affecting neurogenesis. Reduction in the mitochondrial energy production and a lower mitochondrial function have been reported in diverse tissues or cell types, and also at any age, including early fetuses, suggesting that a defect in oxidative phosphorylation is an early and general event in Down syndrome individuals. Moreover, many of the medical conditions associated with Down syndrome are also frequently found in patients with oxidative phosphorylation disease. Several drugs that enhance mitochondrial biogenesis are nowadays available and some of them have been already tested in mouse models of Down syndrome restoring neurogenesis and cognitive defects. Because neurogenesis relies on a correct mitochondrial function and critical periods of brain development occur mainly in the prenatal and early neonatal stages, therapeutic approaches intended to improve oxidative phosphorylation should be provided in these periods.
唐氏综合征是最常见的导致智力残疾的基因组疾病,由21号染色体三体性引起。该染色体上的几个基因会抑制线粒体生物合成。本研究的目的是评估这些基因的早期过表达是否可能导致产前氧化磷酸化受损,从而对神经发生产生负面影响。在包括早期胎儿在内的不同组织或细胞类型中,以及在任何年龄,都有报道称线粒体能量产生减少和线粒体功能降低,这表明氧化磷酸化缺陷是唐氏综合征个体早期普遍存在的现象。此外,许多与唐氏综合征相关的医学病症在氧化磷酸化疾病患者中也经常出现。目前有几种增强线粒体生物合成的药物,其中一些已经在唐氏综合征小鼠模型中进行了测试,可恢复神经发生和认知缺陷。由于神经发生依赖于正确的线粒体功能,且大脑发育的关键时期主要发生在产前和新生儿早期阶段,因此应在这些时期提供旨在改善氧化磷酸化的治疗方法。