Suppr超能文献

肾素前体在发育和疾病中的命运与可塑性

Fate and plasticity of renin precursors in development and disease.

作者信息

Gomez R Ariel, Belyea Brian, Medrano Silvia, Pentz Ellen S, Sequeira-Lopez Maria Luisa S

机构信息

Department of Pediatrics, University of Virginia School of Medicine, 409 Lane Road, Room 2001, Charlottesville, VA, 22908, USA,

出版信息

Pediatr Nephrol. 2014 Apr;29(4):721-6. doi: 10.1007/s00467-013-2688-0. Epub 2013 Dec 15.

Abstract

Renin-expressing cells appear early in the embryo and are distributed broadly throughout the body as organogenesis ensues. Their appearance in the metanephric kidney is a relatively late event in comparison with other organs such as the fetal adrenal gland. The functions of renin cells in extra renal tissues remain to be investigated. In the kidney, they participate locally in the assembly and branching of the renal arterial tree and later in the endocrine control of blood pressure and fluid-electrolyte homeostasis. Interestingly, this endocrine function is accomplished by the remarkable plasticity of renin cell descendants along the kidney arterioles and glomeruli which are capable of reacquiring the renin phenotype in response to physiological demands, increasing circulating renin and maintaining homeostasis. Given that renin cells are sensors of the status of the extracellular fluid and perfusion pressure, several signaling mechanisms (β-adrenergic receptors, Notch pathway, gap junctions and the renal baroreceptor) must be coordinated to ensure the maintenance of renin phenotype--and ultimately the availability of renin--during basal conditions and in response to homeostatic threats. Notably, key transcriptional (Creb/CBP/p300, RBP-J) and posttranscriptional (miR-330, miR125b-5p) effectors of those signaling pathways are prominent in the regulation of renin cell identity. The next challenge, it seems, would be to understand how those factors coordinate their efforts to control the endocrine and contractile phenotypes of the myoepithelioid granulated renin-expressing cell.

摘要

表达肾素的细胞在胚胎早期出现,并随着器官发生的进行广泛分布于全身。与胎儿肾上腺等其他器官相比,它们在后肾中的出现相对较晚。肾外组织中肾素细胞的功能仍有待研究。在肾脏中,它们局部参与肾动脉树的组装和分支,随后参与血压和水电解质稳态的内分泌调节。有趣的是,这种内分泌功能是通过肾素细胞沿肾小动脉和肾小球的后代的显著可塑性来实现的,这些后代能够根据生理需求重新获得肾素表型,增加循环肾素并维持稳态。鉴于肾素细胞是细胞外液状态和灌注压力的传感器,必须协调几种信号传导机制(β-肾上腺素能受体、Notch途径、缝隙连接和肾压力感受器),以确保在基础条件下以及应对稳态威胁时维持肾素表型——最终确保肾素的可用性。值得注意的是,这些信号通路的关键转录(Creb/CBP/p300、RBP-J)和转录后(miR-330、miR125b-5p)效应器在肾素细胞特性的调节中很突出。下一个挑战似乎是了解这些因素如何协同作用来控制表达肾素的肌上皮样颗粒细胞的内分泌和收缩表型。

相似文献

1
Fate and plasticity of renin precursors in development and disease.肾素前体在发育和疾病中的命运与可塑性
Pediatr Nephrol. 2014 Apr;29(4):721-6. doi: 10.1007/s00467-013-2688-0. Epub 2013 Dec 15.
2
Renin cells in homeostasis, regeneration and immune defence mechanisms.在稳态、再生和免疫防御机制中,肾素细胞。
Nat Rev Nephrol. 2018 Apr;14(4):231-245. doi: 10.1038/nrneph.2017.186. Epub 2018 Jan 30.
3
Renin Cells, the Kidney, and Hypertension.肾素细胞、肾脏和高血压。
Circ Res. 2021 Apr 2;128(7):887-907. doi: 10.1161/CIRCRESAHA.121.318064. Epub 2021 Apr 1.
4
Renin Cells, From Vascular Development to Blood Pressure Sensing.肾素细胞:从血管发育到血压感应
Hypertension. 2023 Aug;80(8):1580-1589. doi: 10.1161/HYPERTENSIONAHA.123.20577. Epub 2023 Jun 14.
7
Transcriptional regulator RBP-J regulates the number and plasticity of renin cells.转录调节因子 RBP-J 调节肾素细胞的数量和可塑性。
Physiol Genomics. 2011 Sep 8;43(17):1021-8. doi: 10.1152/physiolgenomics.00061.2011. Epub 2011 Jul 12.
8
The earliest metanephric arteriolar progenitors and their role in kidney vascular development.最早的后肾血管祖细胞及其在肾脏血管发育中的作用。
Am J Physiol Regul Integr Comp Physiol. 2015 Jan 15;308(2):R138-49. doi: 10.1152/ajpregu.00428.2014. Epub 2014 Nov 26.
9
The role of Gata3 in renin cell identity.Gata3 在肾素细胞特征中的作用。
Am J Physiol Renal Physiol. 2023 Aug 1;325(2):F188-F198. doi: 10.1152/ajprenal.00098.2023. Epub 2023 Jun 22.
10
The renin phenotype: roles and regulation in the kidney.肾素表型:在肾脏中的作用与调节
Curr Opin Nephrol Hypertens. 2010 Jul;19(4):366-71. doi: 10.1097/MNH.0b013e32833aff32.

引用本文的文献

2
Polycystic kidneys: interaction of notch and renin.多囊肾病: Notch 与肾素的相互作用。
Clin Sci (Lond). 2023 Aug 14;137(15):1145-1150. doi: 10.1042/CS20230023.
7
Cells of NG2 lineage increase in glomeruli of mice following podocyte depletion.NG2 谱系细胞在 podocyte 耗竭后增加小鼠肾小球中。
Am J Physiol Renal Physiol. 2018 Nov 1;315(5):F1449-F1464. doi: 10.1152/ajprenal.00118.2018. Epub 2018 Jul 18.
8
Development of the renal vasculature.肾脏血管系统的发育。
Semin Cell Dev Biol. 2019 Jul;91:132-146. doi: 10.1016/j.semcdb.2018.06.001. Epub 2018 Jun 6.
10
Renin cells in homeostasis, regeneration and immune defence mechanisms.在稳态、再生和免疫防御机制中,肾素细胞。
Nat Rev Nephrol. 2018 Apr;14(4):231-245. doi: 10.1038/nrneph.2017.186. Epub 2018 Jan 30.

本文引用的文献

1
Pericytes synthesize renin.周细胞合成肾素。
World J Nephrol. 2013 Feb 6;2(1):11-6. doi: 10.5527/wjn.v2.i1.11.
2
Development of the renal arterioles.肾小动脉的发育。
J Am Soc Nephrol. 2011 Dec;22(12):2156-65. doi: 10.1681/ASN.2011080818. Epub 2011 Nov 3.
3
Genes that confer the identity of the renin cell.赋予肾素细胞特征的基因。
J Am Soc Nephrol. 2011 Dec;22(12):2213-25. doi: 10.1681/ASN.2011040401. Epub 2011 Oct 27.
5
Transcriptional regulator RBP-J regulates the number and plasticity of renin cells.转录调节因子 RBP-J 调节肾素细胞的数量和可塑性。
Physiol Genomics. 2011 Sep 8;43(17):1021-8. doi: 10.1152/physiolgenomics.00061.2011. Epub 2011 Jul 12.
8
Small non-coding RNAs in animal development.动物发育中的小非编码RNA
Nat Rev Mol Cell Biol. 2008 Mar;9(3):219-30. doi: 10.1038/nrm2347.
9
MicroRNAs and cell differentiation in mammalian development.微小RNA与哺乳动物发育中的细胞分化
Birth Defects Res C Embryo Today. 2006 Jun;78(2):140-9. doi: 10.1002/bdrc.20070.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验