Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; Department of Biology, Saint Louis University, 1 N. Grand Blvd., St. Louis, MO 63103, United States of America.
Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV 89154, United States of America.
Comp Biochem Physiol B Biochem Mol Biol. 2019 Jun;232:11-22. doi: 10.1016/j.cbpb.2019.02.008. Epub 2019 Feb 23.
Most animal cells rely on aerobic metabolism for survival and are damaged or die within minutes without oxygen. Embryos of the annual killifish Austrofundulus limnaeus, however, survive months without oxygen. Determining how their cells survive without oxygen has the potential to revolutionize our understanding of the cellular mechanisms supporting vertebrate anoxia tolerance and the evolution of such tolerance. Therefore, we aimed to establish and characterize an anoxia-tolerant cell line from A. limnaeus for investigating mechanisms of vertebrate anoxia tolerance. The PSU-AL-WS40NE cell line of neuroepithelial identity was established from embryonic tissue of A. limnaeus using a tissue explant. The cells can survive for at least 49 d without oxygen or replenishment of growth medium, compared to only 3 d of anoxic survival for two mammalian cell lines. PSU-AL-WS40NE cells accumulate lactate during anoxia, indicating use of common metabolic pathways for anaerobic metabolism. Additionally, they express many of the same small noncoding RNAs that are stress-responsive in whole embryos of A. limnaeus and mammalian cells, as well as anoxia-responsive small noncoding RNAs derived from the mitochondrial genome (mitosRNAs). The establishment of the cell line provides a unique tool for investigating cellular mechanisms of vertebrate anoxia tolerance, and has the potential to transform our understanding of the role of oxidative metabolism in cell biology.
大多数动物细胞依赖有氧代谢生存,如果没有氧气,它们会在几分钟内受损或死亡。然而,一年生的食蚊鱼 Austrofundulus limnaeus 的胚胎在没有氧气的情况下可以存活数月。确定它们的细胞在没有氧气的情况下如何存活,有可能彻底改变我们对支持脊椎动物缺氧耐受的细胞机制的理解,以及这种耐受的进化。因此,我们旨在建立和鉴定一种来自 A. limnaeus 的耐缺氧细胞系,以研究脊椎动物缺氧耐受的机制。具有神经上皮特征的 PSU-AL-WS40NE 细胞系是从 A. limnaeus 的胚胎组织中通过组织外植体建立的。与两种哺乳动物细胞系的 3 天缺氧存活相比,这些细胞在没有氧气或生长培养基补充的情况下至少可以存活 49 天。PSU-AL-WS40NE 细胞在缺氧时积累乳酸,表明它们使用了与无氧代谢相同的常见代谢途径。此外,它们表达了许多与 A. limnaeus 和哺乳动物细胞的整个胚胎以及源自线粒体基因组的缺氧反应性小非编码 RNA(mitosRNAs)中相同的应激反应小非编码 RNA。该细胞系的建立为研究脊椎动物缺氧耐受的细胞机制提供了一个独特的工具,并有可能改变我们对氧化代谢在细胞生物学中的作用的理解。