Department of Psychology, University of New Mexico.
Mendoza College of Business, University of Notre Dame.
Multivariate Behav Res. 2020 Mar-Apr;55(2):188-210. doi: 10.1080/00273171.2019.1618545. Epub 2019 Jun 10.
Complex mediation models, such as a two-mediator sequential model, have become more prevalent in the literature. To test an indirect effect in a two-mediator model, we conducted a large-scale Monte Carlo simulation study of the Type I error, statistical power, and confidence interval coverage rates of 10 frequentist and Bayesian confidence/credible intervals (CIs) for normally and nonnormally distributed data. The simulation included never-studied methods and conditions (e.g., Bayesian CI with flat and weakly informative prior methods, two model-based bootstrap methods, and two nonnormality conditions) as well as understudied methods (e.g., profile-likelihood, Monte Carlo with maximum likelihood standard error [MC-ML] and robust standard error [MC-Robust]). The popular BC bootstrap showed inflated Type I error rates and CI under-coverage. We recommend different methods depending on the purpose of the analysis. For testing the null hypothesis of no mediation, we recommend MC-ML, profile-likelihood, and two Bayesian methods. To report a CI, if data has a multivariate normal distribution, we recommend MC-ML, profile-likelihood, and the two Bayesian methods; otherwise, for multivariate nonnormal data we recommend the percentile bootstrap. We argue that the best method for testing hypotheses is not necessarily the best method for CI construction, which is consistent with the findings we present.
复杂的中介模型,如双中介序列模型,在文献中越来越普遍。为了检验双中介模型中的间接效应,我们对正态和非正态分布数据的 10 种常用频率置信区间(CI)和贝叶斯置信/可信区间(CI)进行了大规模的蒙特卡罗模拟研究,以评估其Ⅰ类错误、统计功效和置信区间覆盖率。模拟包括从未研究过的方法和条件(例如,具有平坦和弱信息先验方法的贝叶斯 CI、两种基于模型的自助法和两种非正态条件)以及研究不足的方法(例如,轮廓似然、最大似然标准误差[MC-ML]和稳健标准误差[MC-Robust]的蒙特卡罗法)。流行的 BC 自助法显示出Ⅰ类错误率和 CI 覆盖率不足的问题。我们根据分析目的推荐不同的方法。对于检验无中介的零假设,我们推荐 MC-ML、轮廓似然和两种贝叶斯方法。如果数据具有多元正态分布,则推荐使用 MC-ML、轮廓似然和两种贝叶斯方法来报告 CI;否则,对于多元非正态数据,我们推荐使用百分位自助法。我们认为,检验假设的最佳方法不一定是构建 CI 的最佳方法,这与我们提出的发现一致。