Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America.
PLoS Pathog. 2013;9(12):e1003778. doi: 10.1371/journal.ppat.1003778. Epub 2013 Dec 5.
A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology.
宿主-病原体系统生物学的一个核心挑战是阐明将宿主-病原体相互作用与体内相互作用区分开来的一般系统水平原则。目前对宿主-病原体和体内蛋白质-蛋白质相互作用网络的分析在很大程度上受到其分辨率的限制,将蛋白质视为节点,将相互作用视为边缘。在这里,我们通过注释具有高覆盖率、高精度、以域为中心的相互作用机制的蛋白质相互作用,构建了人类-病毒和体内人类蛋白质-蛋白质相互作用网络的域解析图谱:(1)域-域相互作用,其中一个蛋白质中的一个结构域与另一个蛋白质中的一个结构域结合,(2)结构域-模体相互作用,其中一个蛋白质中的一个结构域与另一个蛋白质中的短线性肽模体结合。对这些域解析网络的分析首次揭示了在单个结构域分辨率下病毒-人类和体内相互作用之间的显著机制差异。虽然人类蛋白质往往通过序列相似性相互竞争结构域结合位点,但病毒蛋白质往往在没有序列相似性的情况下与人类蛋白质竞争结构域结合位点。独立于它们先前建立的靶向人类蛋白质枢纽的偏好,病毒蛋白也优先靶向含有线性模体结合结构域的人类蛋白质。与人类蛋白质相比,病毒蛋白参与更多的结构域-模体相互作用,每个残基针对更多独特的线性模体结合结构域,每个残基包含更多独特的线性模体。总之,这些结果表明,病毒通过趋同进化多个短的线性模体来克服基因组大小的限制,以便有效地模拟、劫持和操纵复杂的宿主过程以生存。我们的域解析分析揭示了病毒-宿主相互作用中多效性、经济性和趋同进化的独特特征,否则这些特征隐藏在传统的二进制网络中,突出了在宿主-病原体系统生物学中使用高分辨率方法的力量和必要性。