Suppr超能文献

mimicINT:一种用于微生物-宿主蛋白相互作用推断的工作流程。

mimicINT: A workflow for microbe-host protein interaction inference.

作者信息

Choteau Sébastien A, Maldonado Kevin, Bergon Aurélie, Cristianini Marceau, Boujeant Mégane, Drets Lilian, Brun Christine, Spinelli Lionel, Zanzoni Andreas

机构信息

Aix-Marseille University, Inserm, TAGC, UMR_S1090, Turing Centre for Living Systems, Marseille, France.

CNRS, Marseille, France.

出版信息

F1000Res. 2025 Mar 28;14:128. doi: 10.12688/f1000research.160063.2. eCollection 2025.

Abstract

BACKGROUND

The increasing incidence of emerging infectious diseases is posing serious global threats. Therefore, there is a clear need for developing computational methods that can assist and speed up experimental research to better characterize the molecular mechanisms of microbial infections.

METHODS

In this context, we developed INT, an open-source computational workflow for large-scale protein-protein interaction inference between microbe and human by detecting putative molecular mimicry elements mediating the interaction with host proteins: short linear motifs (SLiMs) and host-like globular domains. INT exploits these putative elements to infer the interaction with human proteins by using known templates of domain-domain and SLiM-domain interaction templates. INT also provides robust Monte-Carlo simulations to assess the statistical significance of SLiM detection which suffers from false positives, and an interaction specificity filter to account for differences between motif-binding domains of the same family. We have also made INT available via a web server.

RESULTS

In two use cases, INT can identify potential interfaces in experimentally detected interaction between pathogenic type-3 secreted effectors and human proteins and infer biologically relevant interactions between Marburg virus and human proteins.

CONCLUSIONS

The INT workflow can be instrumental to better understand the molecular details of microbe-host interactions.

摘要

背景

新发传染病发病率的不断上升对全球构成了严重威胁。因此,迫切需要开发能够辅助并加速实验研究的计算方法,以更好地描述微生物感染的分子机制。

方法

在此背景下,我们开发了INT,这是一种开源计算工作流程,通过检测介导与宿主蛋白相互作用的假定分子模拟元件:短线性基序(SLiMs)和类宿主球状结构域,来推断微生物与人类之间大规模的蛋白质-蛋白质相互作用。INT利用这些假定元件,通过使用已知的结构域-结构域和SLiM-结构域相互作用模板,来推断与人类蛋白质的相互作用。INT还提供强大的蒙特卡洛模拟,以评估易出现假阳性的SLiM检测的统计显著性,并提供一个相互作用特异性过滤器,以考虑同一家族基序结合结构域之间的差异。我们还通过网络服务器提供了INT。

结果

在两个用例中,INT可以识别致病性3型分泌效应器与人类蛋白质之间实验检测到的相互作用中的潜在界面,并推断马尔堡病毒与人类蛋白质之间的生物学相关相互作用。

结论

INT工作流程有助于更好地理解微生物与宿主相互作用的分子细节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8c7/11982806/cf649165456f/f1000research-14-179574-g0000.jpg

相似文献

1
mimicINT: A workflow for microbe-host protein interaction inference.
F1000Res. 2025 Mar 28;14:128. doi: 10.12688/f1000research.160063.2. eCollection 2025.
2
D-SLIMMER: domain-SLiM interaction motifs miner for sequence based protein-protein interaction data.
J Proteome Res. 2011 Dec 2;10(12):5285-95. doi: 10.1021/pr200312e. Epub 2011 Nov 1.
3
Predicting genome-scale Arabidopsis-Pseudomonas syringae interactome using domain and interolog-based approaches.
BMC Bioinformatics. 2014;15 Suppl 11(Suppl 11):S13. doi: 10.1186/1471-2105-15-S11-S13. Epub 2014 Oct 21.
4
The identification of short linear motif-mediated interfaces within the human interactome.
Bioinformatics. 2012 Apr 1;28(7):976-82. doi: 10.1093/bioinformatics/bts072. Epub 2012 Feb 10.
5
Detection and Analysis of Short Linear Motif-Based Protein-Protein Interactions with SLiMAn2 Web Server.
Methods Mol Biol. 2024;2836:253-281. doi: 10.1007/978-1-0716-4007-4_14.
9
HMI-PRED: A Web Server for Structural Prediction of Host-Microbe Interactions Based on Interface Mimicry.
J Mol Biol. 2020 May 15;432(11):3395-3403. doi: 10.1016/j.jmb.2020.01.025. Epub 2020 Feb 13.
10
Training host-pathogen protein-protein interaction predictors.
J Bioinform Comput Biol. 2018 Aug;16(4):1850014. doi: 10.1142/S0219720018500142. Epub 2018 May 29.

本文引用的文献

1
Integrating multi-omics to unravel host-microbiome interactions in inflammatory bowel disease.
Cell Rep Med. 2024 Sep 17;5(9):101738. doi: 10.1016/j.xcrm.2024.101738.
2
SLiMAn 2.0: meaningful navigation through peptide-protein interaction networks.
Nucleic Acids Res. 2024 Jul 5;52(W1):W313-W317. doi: 10.1093/nar/gkae398.
3
The pathogen-encoded signalling receptor Tir exploits host-like intrinsic disorder for infection.
Commun Biol. 2024 Feb 13;7(1):179. doi: 10.1038/s42003-024-05856-9.
4
The InterPro protein families and domains database: 20 years on.
Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354. doi: 10.1093/nar/gkaa977.
5
Computational Prediction of Disordered Protein Motifs Using SLiMSuite.
Methods Mol Biol. 2020;2141:37-72. doi: 10.1007/978-1-0716-0524-0_3.
7
HMI-PRED: A Web Server for Structural Prediction of Host-Microbe Interactions Based on Interface Mimicry.
J Mol Biol. 2020 May 15;432(11):3395-3403. doi: 10.1016/j.jmb.2020.01.025. Epub 2020 Feb 13.
8
ELM-the eukaryotic linear motif resource in 2020.
Nucleic Acids Res. 2020 Jan 8;48(D1):D296-D306. doi: 10.1093/nar/gkz1030.
9
A Structure-Informed Atlas of Human-Virus Interactions.
Cell. 2019 Sep 5;178(6):1526-1541.e16. doi: 10.1016/j.cell.2019.08.005. Epub 2019 Aug 29.
10
g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update).
Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198. doi: 10.1093/nar/gkz369.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验