酵母Shu复合体通过与Rad51旁系同源物的物理相互作用,利用同源重组机制进行无差错损伤绕过。

The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue.

作者信息

Xu Xin, Ball Lindsay, Chen Wangyang, Tian Xuelei, Lambrecht Amanda, Hanna Michelle, Xiao Wei

机构信息

College of Life Sciences, Capital Normal University, Beijing, China.

出版信息

PLoS One. 2013 Dec 5;8(12):e81371. doi: 10.1371/journal.pone.0081371. eCollection 2013.

Abstract

DNA-damage tolerance (DDT) is defined as a mechanism by which eukaryotic cells resume DNA synthesis to fill the single-stranded DNA gaps left by replication-blocking lesions. Eukaryotic cells employ two different means of DDT, namely translesion DNA synthesis (TLS) and template switching, both of which are coordinately regulated through sequential ubiquitination of PCNA at the K164 residue. In the budding yeast Saccharomyces cerevisiae, the same PCNA-K164 residue can also be sumoylated, which recruits the Srs2 helicase to prevent undesired homologous recombination (HR). While the mediation of TLS by PCNA monoubiquitination has been extensively characterized, the method by which K63-linked PCNA polyubiquitination leads to template switching remains unclear. We recently identified a yeast heterotetrameric Shu complex that couples error-free DDT to HR as a critical step of template switching. Here we report that the Csm2 subunit of Shu physically interacts with Rad55, an accessory protein involved in HR. Rad55 and Rad57 are Rad51 paralogues and form a heterodimer to promote Rad51-ssDNA filament formation by antagonizing Srs2 activity. Although Rad55-Rad57 and Shu function in the same pathway and both act to inhibit Srs2 activity, Shu appears to be dedicated to error-free DDT while the Rad55-Rad57 complex is also involved in double-strand break repair. This study reveals the detailed steps of error-free lesion bypass and also brings to light an intrinsic interplay between error-free DDT and Srs2-mediated inhibition of HR.

摘要

DNA损伤耐受(DDT)被定义为一种机制,通过该机制真核细胞恢复DNA合成以填补由复制阻断性损伤留下的单链DNA缺口。真核细胞采用两种不同的DDT方式,即跨损伤DNA合成(TLS)和模板转换,这两种方式都通过PCNA在K164残基处的顺序泛素化进行协调调节。在芽殖酵母酿酒酵母中,相同的PCNA-K164残基也可以被SUMO化,这会招募Srs2解旋酶以防止不期望的同源重组(HR)。虽然PCNA单泛素化对TLS的介导作用已得到广泛表征,但K63连接的PCNA多泛素化导致模板转换的方式仍不清楚。我们最近鉴定出一种酵母异源四聚体Shu复合物,它将无错误的DDT与HR偶联作为模板转换的关键步骤。在这里我们报告,Shu的Csm2亚基与Rad55发生物理相互作用,Rad55是一种参与HR的辅助蛋白。Rad55和Rad57是Rad51旁系同源物,形成异源二聚体以通过拮抗Srs2活性促进Rad51-ssDNA细丝形成。虽然Rad55-Rad57和Shu在同一途径中发挥作用且都抑制Srs2活性,但Shu似乎专门负责无错误的DDT,而Rad55-Rad57复合物也参与双链断裂修复。这项研究揭示了无错误损伤绕过的详细步骤,也揭示了无错误DDT与Srs2介导的HR抑制之间的内在相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db4e/3855272/8205d354eb05/pone.0081371.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索