Suppr超能文献

控制木质素聚合的化学因素。

Chemical factors that control lignin polymerization.

机构信息

UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6309, United States.

出版信息

J Phys Chem B. 2014 Jan 9;118(1):164-70. doi: 10.1021/jp411998t. Epub 2013 Dec 30.

Abstract

Lignin is a complex, branched polymer that reinforces plant tissue. Understanding the factors that govern lignin structure is of central importance to the development of technologies for converting lignocellulosic biomass into fuels because lignin imparts resistance to chemical, enzymatic, and mechanical deconstruction. Lignin is formed by enzymatic oxidation of phenolic monomers (monolignols) of three main types, guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) subunits. It is known that increasing the relative abundance of H subunits results in lower molecular weight lignin polymers and hence more easily deconstructed biomass, but it is not known why. Here, we report an analysis of frontier molecular orbitals in mono-, di-, and trilignols, calculated using density functional theory, which points to a requirement of strong p-electron density on the reacting phenolic oxygen atom of the neutral precursor for enzymatic oxidation to occur. This model is consistent with a proton-coupled electron transfer (PCET) mechanism and for the first time explains why H subunits in certain linkages (β-β or β-5) react poorly and tend to "cap" the polymer. In general, β-5 linkages with either a G or H terminus are predicted to inhibit elongation. More broadly, the model correctly accounts for the reactivity of the phenolic groups in a diverse set of dilignols comprising H and G subunits. Thus, we provide a coherent framework for understanding the propensity toward growth or termination of different terminal subunits in lignin.

摘要

木质素是一种复杂的支链聚合物,可增强植物组织。了解控制木质素结构的因素对于开发将木质纤维素生物质转化为燃料的技术至关重要,因为木质素赋予了对化学、酶和机械解构的抵抗力。木质素是由三种主要类型的酚单体(愈创木基单体、丁香基单体和对羟苯基单体)的酶促氧化形成的。已知增加 H 亚基的相对丰度会导致木质素聚合物的分子量降低,因此更容易解构生物质,但不知道原因。在这里,我们报告了使用密度泛函理论计算的单、二和三愈创木基醇中前沿分子轨道的分析,这表明对于酶促氧化反应,中性前体中反应性酚氧原子需要具有强 p 电子密度。该模型与质子耦合电子转移(PCET)机制一致,并首次解释了为什么某些键(β-β 或 β-5)中的 H 亚基反应性差且倾向于“封端”聚合物。一般来说,具有 G 或 H 末端的β-5 键预计会抑制伸长。更广泛地说,该模型正确地解释了包含 H 和 G 亚基的各种二愈创木基醇中酚基团的反应性。因此,我们为理解木质素中不同末端亚基的生长或终止倾向提供了一个连贯的框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验