Suppr超能文献

传统和新型血清学检测方法预测口蹄疫疫苗接种牛交叉保护力的准确性。

Accuracy of traditional and novel serology tests for predicting cross-protection in foot-and-mouth disease vaccinated cattle.

机构信息

Center for Animal Diseases Modeling and Surveillance, University of California-Davis, Davis, CA, USA.

Center for Animal Diseases Modeling and Surveillance, University of California-Davis, Davis, CA, USA; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.

出版信息

Vaccine. 2014 Jan 16;32(4):433-6. doi: 10.1016/j.vaccine.2013.12.007. Epub 2013 Dec 14.

Abstract

Foot-and-mouth disease virus (FMDV) antigenic-match between vaccine and field viruses has traditionally been estimated in vitro by computing the r1 value using virus neutralization test (VNT) or ELISA titers. In this study we compared the accuracy in predicting cross-protection between the r1 value estimated by VNT and two recently developed tests that measure IgG subtypes and avidity. Data analyzed consisted of 64 serum samples from FMDV A24/Cruzeiro vaccinated bovines challenged with the heterologous A/Argentina/2001 strain and evaluated for podal generalization. We computed the tests sensitivity (Se), specificity (Sp), and receiving operating characteristics (ROC) curve. The heterologous IgG1/IgG2 ratio was the most accurate test (Se=0.71, Sp=0.98), followed by heterologous IgG1 (Se=0.53, Sp=0.96), VNT (Se=0.47, Sp=1.00), whereas r1 accuracy was substantially low (Se=0.41, Sp=0.81). Because sensitivity of individual tests was limited, we argue that two or more of the tests should be used in combination to produce accurate estimates of protection.

摘要

口蹄疫病毒(FMDV)疫苗与田间病毒之间的抗原匹配传统上通过计算病毒中和试验(VNT)或 ELISA 滴度的 r1 值来体外估计。在这项研究中,我们比较了 VNT 估计的 r1 值与最近开发的两种测量 IgG 亚型和亲和力的测试在预测交叉保护方面的准确性。分析的数据包括 64 份来自 A24/Cruzeiro 接种的牛的血清样本,这些牛受到了异源 A/Argentina/2001 株的挑战,并评估了跗部泛化。我们计算了测试的敏感性(Se)、特异性(Sp)和接收操作特性(ROC)曲线。异源 IgG1/IgG2 比值是最准确的测试(Se=0.71,Sp=0.98),其次是异源 IgG1(Se=0.53,Sp=0.96)、VNT(Se=0.47,Sp=1.00),而 r1 的准确性则相对较低(Se=0.41,Sp=0.81)。由于单个测试的敏感性有限,我们认为应该结合使用两种或更多种测试来产生对保护的准确估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验