Suppr超能文献

GPR35 受体配体激活的关键正电荷残基。

Crucial positively charged residues for ligand activation of the GPR35 receptor.

机构信息

From the Department of Anatomy and Cell Biology.

出版信息

J Biol Chem. 2014 Feb 7;289(6):3625-38. doi: 10.1074/jbc.M113.508382. Epub 2013 Dec 17.

Abstract

GPR35 is a G protein-coupled receptor expressed in the immune, gastrointestinal, and nervous systems in gastric carcinomas and is implicated in heart failure and pain perception. We investigated residues in GPR35 responsible for ligand activation and the receptor structure in the active state. GPR35 contains numerous positively charged amino acids that face into the binding pocket that cluster in two distinct receptor regions, TMH3-4-5-6 and TMH1-2-7. Computer modeling implicated TMH3-4-5-6 for activation by the GPR35 agonists zaprinast and pamoic acid. Mutation results for the TMH1-2-7 region of GPR35 showed no change in ligand efficacies at the K1.32A, R2.65A, R7.33A, and K7.40A mutants. However, mutation of arginine residues in the TMH3-4-5-6 region (R4.60, R6.58, R3.36, R(164), and R(167) in the EC2 loop) had effects on signaling for one or both agonists tested. R4.60A resulted in a total ablation of agonist-induced activation in both the β-arrestin trafficking and ERK1/2 activation assays. R6.58A increased the potency of zaprinast 30-fold in the pERK assay. The R(167)A mutant decreased the potency of pamoic acid in the β-arrestin trafficking assay. The R(164)A and R(164)L mutants decreased potencies of both agonists. Similar trends for R6.58A and R(167)A were observed in calcium responses. Computer modeling showed that the R6.58A mutant has additional interactions with zaprinast. R3.36A did not express on the cell surface but was trapped in the cytoplasm. The lack of surface expression of R3.36A was rescued by a GPR35 antagonist, CID2745687. These results clearly show that R4.60, R(164), R(167), and R6.58 play crucial roles in the agonist initiated activation of GPR35.

摘要

GPR35 是一种在胃癌中的免疫、胃肠道和神经系统中表达的 G 蛋白偶联受体,与心力衰竭和疼痛感知有关。我们研究了负责配体激活的 GPR35 残基和处于活性状态的受体结构。GPR35 包含许多面向结合口袋的带正电荷的氨基酸,这些氨基酸聚集在两个不同的受体区域,TMH3-4-5-6 和 TMH1-2-7 中。计算机建模表明,TMH3-4-5-6 负责 GPR35 激动剂扎普瑞斯特和帕莫酸的激活。GPR35 的 TMH1-2-7 区域的突变结果表明,K1.32A、R2.65A、R7.33A 和 K7.40A 突变体的配体效价没有变化。然而,EC2 环中 TMH3-4-5-6 区域的精氨酸残基(R4.60、R6.58、R3.36、R(164)和 R(167))的突变对测试的一种或两种激动剂的信号转导都有影响。R4.60A 导致两种激动剂诱导的激活的β-arrestin 转运和 ERK1/2 激活测定完全消失。R6.58A 在 pERK 测定中使扎普瑞斯特的效力增加 30 倍。R(167)A 突变体降低了 pamoic 酸在β-arrestin 转运测定中的效力。R(164)A 和 R(164)L 突变体降低了两种激动剂的效力。在钙反应中也观察到了 R6.58A 和 R(167)A 的类似趋势。计算机建模表明,R6.58A 突变体与扎普瑞斯特有额外的相互作用。R3.36A 没有表达在细胞表面,但被困在细胞质中。CID2745687 是一种 GPR35 拮抗剂,它可以挽救 R3.36A 缺乏表面表达的情况。这些结果清楚地表明,R4.60、R(164)、R(167)和 R6.58 在激动剂引发的 GPR35 激活中起着关键作用。

相似文献

1
Crucial positively charged residues for ligand activation of the GPR35 receptor.
J Biol Chem. 2014 Feb 7;289(6):3625-38. doi: 10.1074/jbc.M113.508382. Epub 2013 Dec 17.
3
Zaprinast, a well-known cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35.
FEBS Lett. 2006 Sep 18;580(21):5003-8. doi: 10.1016/j.febslet.2006.08.015. Epub 2006 Aug 17.
4
G-protein coupled receptor 35 (GPR35) activation and inflammatory pain: Studies on the antinociceptive effects of kynurenic acid and zaprinast.
Neuropharmacology. 2011 Jun;60(7-8):1227-31. doi: 10.1016/j.neuropharm.2010.11.014. Epub 2010 Nov 24.
5
G protein-coupled receptor 35 contributes to mucosal repair in mice via migration of colonic epithelial cells.
Pharmacol Res. 2017 Sep;123:27-39. doi: 10.1016/j.phrs.2017.06.009. Epub 2017 Jun 23.
8
G protein-coupled estrogen receptor 1 (GPER1)/GPR30 increases ERK1/2 activity through PDZ motif-dependent and -independent mechanisms.
J Biol Chem. 2017 Jun 16;292(24):9932-9943. doi: 10.1074/jbc.M116.765875. Epub 2017 Apr 27.
9
Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5160-8. doi: 10.1073/pnas.1508836112. Epub 2015 Aug 31.
10
Ligand directed signaling differences between rodent and human κ-opioid receptors.
J Biol Chem. 2012 Dec 7;287(50):41595-607. doi: 10.1074/jbc.M112.381368. Epub 2012 Oct 19.

引用本文的文献

1
From orphan to oncogene: The role of GPR35 in cancer and immune modulation.
Cytokine Growth Factor Rev. 2024 Jun;77:56-66. doi: 10.1016/j.cytogfr.2024.03.004. Epub 2024 Mar 19.
2
Targeting Members of the Chemokine Family as a Novel Approach to Treating Neuropathic Pain.
Molecules. 2023 Jul 30;28(15):5766. doi: 10.3390/molecules28155766.
3
GPR35 and mediators from platelets and mast cells in neutrophil migration and inflammation.
Immunol Rev. 2023 Aug;317(1):187-202. doi: 10.1111/imr.13194. Epub 2023 Mar 16.
4
Insights into divalent cation regulation and G-coupling of orphan receptor GPR35.
Cell Discov. 2022 Dec 21;8(1):135. doi: 10.1038/s41421-022-00499-8.
5
Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists.
Science. 2022 Aug 5;377(6606):621-629. doi: 10.1126/science.abm1638. Epub 2022 Aug 4.
6
Kynurenic Acid Accelerates Healing of Corneal Epithelium In Vitro and In Vivo.
Pharmaceuticals (Basel). 2021 Jul 30;14(8):753. doi: 10.3390/ph14080753.
7
Therapeutic Opportunities and Challenges in Targeting the Orphan G Protein-Coupled Receptor GPR35.
ACS Pharmacol Transl Sci. 2020 Jul 29;3(5):801-812. doi: 10.1021/acsptsci.0c00079. eCollection 2020 Oct 9.
9
Structure-activity relationships of benzothiazole GPR35 antagonists.
Bioorg Med Chem Lett. 2017 Feb 1;27(3):612-615. doi: 10.1016/j.bmcl.2016.12.012. Epub 2016 Dec 5.
10
The therapeutic potential of orphan GPCRs, GPR35 and GPR55.
Front Pharmacol. 2015 Apr 15;6:69. doi: 10.3389/fphar.2015.00069. eCollection 2015.

本文引用的文献

2
Crystal structure of metarhodopsin II.
Nature. 2011 Mar 31;471(7340):651-5. doi: 10.1038/nature09789. Epub 2011 Mar 9.
3
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
Nature. 2011 Jan 13;469(7329):175-80. doi: 10.1038/nature09648.
4
G-protein coupled receptor 35 (GPR35) activation and inflammatory pain: Studies on the antinociceptive effects of kynurenic acid and zaprinast.
Neuropharmacology. 2011 Jun;60(7-8):1227-31. doi: 10.1016/j.neuropharm.2010.11.014. Epub 2010 Nov 24.
6
Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.
Science. 2010 Nov 19;330(6007):1066-71. doi: 10.1126/science.1194396. Epub 2010 Oct 7.
8
An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals.
J Biol Chem. 2010 Dec 3;285(49):38511-6. doi: 10.1074/jbc.M110.162073. Epub 2010 Sep 29.
10
Mind your salts: when the inactive constituent isn't.
Mol Pharmacol. 2010 Oct;78(4):558-9. doi: 10.1124/mol.110.067645. Epub 2010 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验