Centre of Molecular Biology and Gene Therapy, University Hospital, Brno, Brno, Czech Republic ; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
Department of Neurology, University Hospital Brno, Brno, Czech Republic.
PLoS One. 2013 Dec 11;8(12):e82549. doi: 10.1371/journal.pone.0082549. eCollection 2013.
Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessive myotonia most likely affect properties of only the mutant monomer in the heterodimer, leaving the wild type monomer unaffected, while mutations causing dominant myotonia affect properties of both subunits in the heterodimer. Our study addresses two points: 1) molecular genetic diagnostics of MC by analysis of the CLCN1 gene and 2) structural analysis of mutations in the homology model of the human dimeric ClC-1 protein. In the first part, 34 different types of CLCN1 mutations were identified in 51 MC probands (14 mutations were new). In the second part, on the basis of the homology model we identified the amino acids which forming the dimer interface and those which form the Cl(-) ion pathway. In the literature, we searched for mutations of these amino acids for which functional analyses were performed to assess the correlation between localisation of a mutation and occurrence of a dominant-negative effect (corresponding to dominant MC). This revealed that both types of mutations, with and without a dominant-negative effect, are localised at the dimer interface while solely mutations without a dominant-negative effect occur inside the chloride channel. This work is complemented by structural analysis of the homology model which provides elucidation of the effects of mutations, including a description of impacts of newly detected missense mutations.
先天性肌强直症(MC)是一种由骨骼肌肉氯离子通道基因(CLCN1)编码的骨骼肌肉氯离子通道(ClC-1)突变引起的遗传性疾病。CLCN1 的突变导致常染色体显性 MC(汤姆斯病)或常染色体隐性 MC(贝克病)。ClC-1 蛋白是一种具有独立离子通道的同源二聚体,每个单体中都有一个。导致隐性肌强直的突变很可能仅影响杂二聚体中突变单体的特性,而不影响野生型单体,而导致显性肌强直的突变则影响杂二聚体中两个亚基的特性。我们的研究解决了两个问题:1)通过分析 CLCN1 基因对 MC 进行分子遗传诊断,2)在人类二聚体 ClC-1 蛋白的同源模型上对突变进行结构分析。在第一部分中,在 51 名 MC 先证者中鉴定出 34 种不同类型的 CLCN1 突变(14 种突变是新的)。在第二部分,基于同源模型,我们确定了形成二聚体界面的氨基酸和形成 Cl(-)离子通道的氨基酸。在文献中,我们搜索了这些氨基酸的突变,对其进行了功能分析,以评估突变的定位与显性负效应(对应于显性 MC)的发生之间的相关性。这表明,具有和不具有显性负效应的两种类型的突变都定位于二聚体界面,而仅有不具有显性负效应的突变发生在氯离子通道内。这项工作得到了同源模型结构分析的补充,该分析提供了对突变效应的阐明,包括对新发现的错义突变的描述。