Suppr超能文献

强烈的愤怒:对恶化的动态身体情绪表达的识别。

Robust anger: recognition of deteriorated dynamic bodily emotion expressions.

作者信息

Visch Valentijn T, Goudbeek Martijn B, Mortillaro Marcello

机构信息

a Faculty of Industrial Design Engineering , Technical University Delft , Delft , The Netherlands.

出版信息

Cogn Emot. 2014;28(5):936-46. doi: 10.1080/02699931.2013.865595. Epub 2013 Dec 18.

Abstract

In two studies, the robustness of anger recognition of bodily expressions is tested. In the first study, video recordings of an actor expressing four distinct emotions (anger, despair, fear, and joy) were structurally manipulated as to image impairment and body segmentation. The results show that anger recognition is more robust than other emotions to image impairment and to body segmentation. Moreover, the study showed that arms expressing anger were more robustly recognised than arms expressing other emotions. Study 2 added face blurring as a variable to the bodily expressions and showed that it decreased accurate emotion recognition-but more for recognition of joy and despair than for anger and fear. In sum, the paper indicates the robustness of anger recognition in multileveled deteriorated bodily expressions.

摘要

在两项研究中,对身体表情的愤怒识别的稳健性进行了测试。在第一项研究中,对一名演员表达四种不同情绪(愤怒、绝望、恐惧和喜悦)的视频记录在图像损伤和身体分割方面进行了结构上的操作。结果表明,与其他情绪相比,愤怒识别对图像损伤和身体分割更具稳健性。此外,该研究表明,表达愤怒的手臂比表达其他情绪的手臂更能被稳健地识别。研究2在身体表情中增加了面部模糊这一变量,结果表明这降低了情绪识别的准确性——但对喜悦和绝望的识别影响比对愤怒和恐惧的识别影响更大。总之,该论文指出了在多层次退化身体表情中愤怒识别的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验