Klueh Ulrike, Antar Omar, Qiao Yi, Kreutzer Donald L
Center for Molecular Tissue Engineering, University of Connecticut School of Medicine, Farmington, CT.
J Diabetes Sci Technol. 2013 Nov 1;7(6):1538-46. doi: 10.1177/193229681300700614.
Glucose-sensor-induced tissue reactions (e.g., inflammation and wound healing) are known to negatively impact sensor function in vivo. The roles of cytokine networks in controlling these tissue reactions (i.e., sensor biofouling) is not understood. In the present study, we investigated the role of interleukin-1 receptor antagonist (IL-1Ra), a key anti-inflammatory antagonist of the proinflammatory interleukin-1 cytokines [i.e. interleukin-1 (IL-1) alpha and IL-1 beta] in controlling continuous glucose monitoring (CGM).
To investigate the role of IL-1Ra in long-term CGM in vivo, we compared CGM in transgenic mice that overexpress IL-1Ra [interleukin-1 receptor antagonist overexpresser (IL-1RaOE), B6.Cg-Tg(IL1rn)1Dih/J] or are deficient in IL-1Ra [interleukin-1 receptor antagonist knockout (IL-1RaKO), B6.129S-IL1rn(tm1Dih)/J] with mice that have normal levels of IL-1Ra (C57BL/6) over a 28-day time period.
Mean absolute relative difference (MARD) analysis of CGM results among the mice of varying IL-1Ra levels demonstrated that during the first 21 days, IL-1KO mice had the greatest tissue inflammation and the poorest sensor performance (i.e., higher MARD values) when compared with normal or IL-1RaOE mice. By 28 days post-sensor implantation, the inflammatory reactions had subsided and were replaced by varying degrees of fibrosis.
These data support our hypothesis on the importance of the IL-1 family of agonists and antagonists in controlling tissue reactions and sensor function in vivo. These data also suggest that local delivery of IL-1Ra genes or recombinant proteins (anakinra) or other IL-1 antagonists such as antibodies or soluble IL-1 receptors would suppress sensor-induced tissue reactions and likely enhance glucose sensor function by inhibiting inflammation and wound healing at sensor implantation sites.
已知葡萄糖传感器引发的组织反应(如炎症和伤口愈合)会对体内传感器功能产生负面影响。细胞因子网络在控制这些组织反应(即传感器生物污染)中的作用尚不清楚。在本研究中,我们研究了白细胞介素-1受体拮抗剂(IL-1Ra),一种促炎白细胞介素-1细胞因子[即白细胞介素-1(IL-1)α和IL-1β]的关键抗炎拮抗剂在控制连续血糖监测(CGM)中的作用。
为了研究IL-1Ra在体内长期CGM中的作用,我们比较了在28天时间内,过表达IL-1Ra的转基因小鼠[白细胞介素-1受体拮抗剂过表达小鼠(IL-1RaOE),B6.Cg-Tg(IL1rn)1Dih/J]或缺乏IL-1Ra的小鼠[白细胞介素-1受体拮抗剂敲除小鼠(IL-1RaKO),B6.129S-IL1rn(tm1Dih)/J]与IL-1Ra水平正常的小鼠(C57BL/6)的CGM情况。
对不同IL-1Ra水平小鼠的CGM结果进行平均绝对相对差异(MARD)分析表明,在最初的21天里,与正常或IL-1RaOE小鼠相比,IL-1KO小鼠的组织炎症最严重,传感器性能最差(即MARD值更高)。到传感器植入后28天,炎症反应消退,取而代之的是不同程度的纤维化。
这些数据支持了我们关于IL-1激动剂和拮抗剂家族在控制体内组织反应和传感器功能方面重要性的假设。这些数据还表明,局部递送IL-1Ra基因或重组蛋白(阿那白滞素)或其他IL-1拮抗剂,如抗体或可溶性IL-1受体,将抑制传感器引发的组织反应,并可能通过抑制传感器植入部位的炎症和伤口愈合来增强葡萄糖传感器功能。