Sharafieh Roshanak, Qiao Yi, Godlewski Izabela, Czajkowski Caroline, Wu Rong, Hargis Geneva R, Kreutzer Don, Klueh Ulrike
Department of Surgery, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, 06030, CT, USA.
Cell and Molecular Tissue Engineering LLC, 14 Highwood Drive, Avon, 06001, CT, USA.
Biosens Bioelectron X. 2024 Aug;19. doi: 10.1016/j.biosx.2024.100511. Epub 2024 Jun 21.
Continuous glucose monitoring (CGM) using implantable glucose sensors is a critical tool in the management of diabetes. Unfortunately, current commercial glucose sensors have limited performance and lifespans , considered to be due to sensor-induced tissue reactions (inflammation, fibrosis, and vessel regression). Previously, our laboratory utilized monocyte/macrophage (Mo/MQ) deficient and depleted mice to establish a causal relationship between Mo/MQ accumulation and inflammation in glucose sensor performance . Using C-C chemokine ligand-2 (CCL2) and C-C chemokine receptor-2 (CCR2) knockout mice, we next established that deletion of this Mo/MQ chemokine family, suppressed inflammation at the sensor-tissue interface in these mice, while improving sensor performance over a 4-week post-sensor implantation, compared to normal mice. These studies underscore the importance of the CCL2 family of chemokines and receptors in Mo/MQ recruitment/activation, and sensor performance . In the present study, we systemically administered Bindarit, a CCL2 synthesis inhibitor, to assess the role of CCL2 chemokines, Mo/MQ recruitment and inflammation at sensor implantation sites, on CGM performance . These studies demonstrate that systemic administration of Bindarit substantially reduced sensor-induced inflammation, particularly MQ recruitment, preventing sensor biofouling in our CGM mouse model. These results not only confirm the major role monocytes/macrophages play, but directly demonstrate that CCL2 drives Mo/MQ recruitment and biofouling of glucose sensors . These findings support future studies incorporating Mo/MQ migration/chemotaxis inhibitors, like CCL2, on sensor coatings to improve glucose sensor accuracy and lifespan .
使用可植入葡萄糖传感器的连续血糖监测(CGM)是糖尿病管理中的一项关键工具。不幸的是,目前的商用葡萄糖传感器性能和寿命有限,这被认为是由传感器引起的组织反应(炎症、纤维化和血管退化)所致。此前,我们实验室利用单核细胞/巨噬细胞(Mo/MQ)缺陷和耗竭的小鼠,建立了Mo/MQ积累与葡萄糖传感器性能炎症之间的因果关系。接下来,我们使用C-C趋化因子配体-2(CCL2)和C-C趋化因子受体-2(CCR2)基因敲除小鼠,证实了删除这个Mo/MQ趋化因子家族,可抑制这些小鼠传感器-组织界面处的炎症,同时与正常小鼠相比,在传感器植入后4周内提高了传感器性能。这些研究强调了趋化因子和受体的CCL2家族在Mo/MQ募集/激活以及传感器性能方面的重要性。在本研究中,我们系统性地给予CCL2合成抑制剂Bindarit,以评估CCL2趋化因子、Mo/MQ募集和传感器植入部位炎症对CGM性能的作用。这些研究表明,系统性给予Bindarit可显著减少传感器诱导的炎症,尤其是MQ募集,从而防止我们的CGM小鼠模型中的传感器生物污染。这些结果不仅证实了单核细胞/巨噬细胞所起的主要作用,还直接证明CCL2驱动Mo/MQ募集和葡萄糖传感器的生物污染。这些发现支持未来开展相关研究,在传感器涂层中加入Mo/MQ迁移/趋化抑制剂,如CCL2,以提高葡萄糖传感器的准确性和寿命。