Department of Chemistry, University of Toronto, , 80 St George St., Toronto, Ontario, Canada , M5S 3H6.
J R Soc Interface. 2013 Dec 18;11(92):20130901. doi: 10.1098/rsif.2013.0901. Print 2014 Mar 6.
Photosynthesis begins with light harvesting, where specialized pigment-protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques.
光合作用始于光捕获,在这个过程中,专门的色素-蛋白质复合物将阳光转化为电子激发态,传递到反应中心以引发电荷分离。有证据表明,电子激发态之间的量子相干在能量转移中起着作用。在这篇综述中,我们讨论了量子相干如何在光合作用的光捕获中表现出来及其意义。我们首先考察了激子的概念,激子是几个空间分离的分子上的离域的激发电子态,这是光捕获中量子相干最广泛的特征。然后,我们讨论了最近的一些结果,这些结果表明供体和受体的电子激发态之间的量子相干可能导致激发态的量子相干演化,从而改变能量转移的传统非相干图像。这种(部分)相干能量转移的关键似乎是环境的结构,特别是非平衡振动模式的参与。我们讨论了关于量子相干能量转移的悬而未决的问题和争议,以及如何使用新的实验技术来解决这些问题。