Suppr超能文献

光合作用光捕获:激子和相干性。

Photosynthetic light harvesting: excitons and coherence.

机构信息

Department of Chemistry, University of Toronto, , 80 St George St., Toronto, Ontario, Canada , M5S 3H6.

出版信息

J R Soc Interface. 2013 Dec 18;11(92):20130901. doi: 10.1098/rsif.2013.0901. Print 2014 Mar 6.

Abstract

Photosynthesis begins with light harvesting, where specialized pigment-protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques.

摘要

光合作用始于光捕获,在这个过程中,专门的色素-蛋白质复合物将阳光转化为电子激发态,传递到反应中心以引发电荷分离。有证据表明,电子激发态之间的量子相干在能量转移中起着作用。在这篇综述中,我们讨论了量子相干如何在光合作用的光捕获中表现出来及其意义。我们首先考察了激子的概念,激子是几个空间分离的分子上的离域的激发电子态,这是光捕获中量子相干最广泛的特征。然后,我们讨论了最近的一些结果,这些结果表明供体和受体的电子激发态之间的量子相干可能导致激发态的量子相干演化,从而改变能量转移的传统非相干图像。这种(部分)相干能量转移的关键似乎是环境的结构,特别是非平衡振动模式的参与。我们讨论了关于量子相干能量转移的悬而未决的问题和争议,以及如何使用新的实验技术来解决这些问题。

相似文献

1
Photosynthetic light harvesting: excitons and coherence.
J R Soc Interface. 2013 Dec 18;11(92):20130901. doi: 10.1098/rsif.2013.0901. Print 2014 Mar 6.
2
Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer.
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8493-8498. doi: 10.1073/pnas.1702261114. Epub 2017 Jul 25.
3
Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer.
Phys Chem Chem Phys. 2010 Jul 21;12(27):7319-37. doi: 10.1039/c003389h. Epub 2010 Jun 12.
4
Direct evidence of quantum transport in photosynthetic light-harvesting complexes.
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20908-12. doi: 10.1073/pnas.1105234108. Epub 2011 Dec 13.
5
Microscopic quantum coherence in a photosynthetic-light-harvesting antenna.
Philos Trans A Math Phys Eng Sci. 2012 Aug 13;370(1972):3672-91. doi: 10.1098/rsta.2011.0207.
6
Measures and implications of electronic coherence in photosynthetic light-harvesting.
Philos Trans A Math Phys Eng Sci. 2012 Aug 13;370(1972):3728-49. doi: 10.1098/rsta.2011.0420.
8
Theoretical description of quantum effects in multi-chromophoric aggregates.
Philos Trans A Math Phys Eng Sci. 2012 Aug 13;370(1972):3620-37. doi: 10.1098/rsta.2011.0204.
10
Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):706-11. doi: 10.1073/pnas.1110312109. Epub 2012 Jan 3.

引用本文的文献

2
Evidence for a possible quantum effect on the formation of lithium-doped amorphous calcium phosphate from solution.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2423211122. doi: 10.1073/pnas.2423211122. Epub 2025 Mar 6.
3
Theory of photosynthetic membrane influence on B800-B850 energy transfer in the LH2 complex.
Biophys J. 2025 Mar 4;124(5):722-739. doi: 10.1016/j.bpj.2025.01.011. Epub 2025 Jan 22.
4
Theoretical Study on the Excitation Energy Transfer Dynamics in the Phycoerythrin PE555 Light-Harvesting Complex.
ACS Omega. 2024 Dec 16;9(52):51228-51236. doi: 10.1021/acsomega.4c07445. eCollection 2024 Dec 31.
5
Bio-inspired building blocks for all-organic metamaterials from visible to near-infrared.
Nanophotonics. 2023 Jan 20;12(2):307-318. doi: 10.1515/nanoph-2022-0690. eCollection 2023 Jan.
7
Protein Effects on the Excitation Energies and Exciton Dynamics of the CP24 Antenna Complex.
J Phys Chem B. 2024 May 30;128(21):5201-5217. doi: 10.1021/acs.jpcb.4c01637. Epub 2024 May 16.
8
Minimizing Structural Heterogeneity in DNA Self-Assembled Dye Templating via DNA Origami-Tuned Conformations.
Langmuir. 2024 May 14;40(19):10195-10207. doi: 10.1021/acs.langmuir.4c00470. Epub 2024 May 1.
9
Spatial Correlations Drive Long-Range Transport and Trapping of Excitons in Single H-Aggregates: Experiment and Theory.
J Phys Chem Lett. 2024 Mar 14;15(10):2697-2707. doi: 10.1021/acs.jpclett.3c03586. Epub 2024 Mar 1.
10
Dominant role of excitons in photosynthetic color-tuning and light-harvesting.
Front Chem. 2023 Oct 16;11:1231431. doi: 10.3389/fchem.2023.1231431. eCollection 2023.

本文引用的文献

1
Coherent Vibronic Coupling in Light-Harvesting Complexes from Photosynthetic Marine Algae.
J Phys Chem Lett. 2012 Jan 19;3(2):272-7. doi: 10.1021/jz201600f. Epub 2012 Jan 10.
2
Coherent Energy Transfer under Incoherent Light Conditions.
J Phys Chem Lett. 2012 Nov 1;3(21):3136-42. doi: 10.1021/jz3010317. Epub 2012 Oct 15.
3
Probing Photosynthetic Energy and Charge Transfer with Two-Dimensional Electronic Spectroscopy.
J Phys Chem Lett. 2012 Feb 16;3(4):503-10. doi: 10.1021/jz201592v. Epub 2012 Feb 3.
4
Does Coherence Enhance Transport in Photosynthesis?
J Phys Chem Lett. 2013 Feb 7;4(3):362-7. doi: 10.1021/jz301872b. Epub 2013 Jan 11.
5
Cryptomonad biliproteins: Bilin types and locations.
Photosynth Res. 1996 May;48(1-2):163-70. doi: 10.1007/BF00041006.
6
Designs for molecular circuits that use electronic coherence.
Faraday Discuss. 2013;163:341-51; discussion 393-432. doi: 10.1039/c3fd00009e.
7
8
Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
Science. 2013 Jun 21;340(6139):1448-51. doi: 10.1126/science.1235820.
9
Three-pulse photon echo of finite numbers of molecules: single-molecule traces.
J Phys Chem B. 2013 Sep 26;117(38):11318-25. doi: 10.1021/jp402768c. Epub 2013 May 22.
10
Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation.
J Phys Chem B. 2013 Sep 26;117(38):11200-8. doi: 10.1021/jp401663w. Epub 2013 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验