Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States.
Biomolecular Sciences Graduate Programs, Boise State University, Boise, Idaho 83725, United States.
Langmuir. 2024 May 14;40(19):10195-10207. doi: 10.1021/acs.langmuir.4c00470. Epub 2024 May 1.
With recent advances in DNA-templated dye aggregation for leveraging and engineering molecular excitons, a need exists for minimizing structural heterogeneity. Holliday Junction complexes (HJ) are commonly used to covalently template dye aggregates on their core; however, the global conformation of HJ is detrimentally dynamic. Here, the global conformation of the HJ is selectively tuned by restricting its position and orientation by using a sheet-like DNA origami construct (DOC) physisorbed on glass. The HJ arms are fixed with four different designed interduplex angles (IDAs). Atomic force microscopy confirmed that the HJs are bound to the surface of DOC with tuned IDAs. Dye orientation distributions were determined by combining dipole imaging and super-resolution microscopy. All IDAs led to dye orientations having dispersed distributions along planes perpendicular to the HJ plane, suggesting that stacking occurred between the dye and the neighboring DNA bases. The dye-base stacking interpretation was supported by increasing the size of the core cavity. The narrowest IDA minimizes structural heterogeneity and suggests dye intercalation. A strong correlation is found between the IDA and the orientation of the dye along the HJ plane. These results show that the HJ imposes restrictions on the dye and that the dye-DNA interactions are always present regardless of global conformation. The implications of our results are discussed for the scalability of dye aggregates using DNA self-assembly. Our methodology provides an avenue for the solid-supported single-molecule characterization of molecular assemblies templated on biomolecules─such as DNA and protein templates involved in light-harvesting and catalysis─with tuned conformations and restricted in position and orientation.
随着 DNA 模板染料聚集在利用和工程分子激子方面的最新进展,需要最小化结构异质性。 Holliday 连接复合体(HJ)通常用于在其核心上共价模板化染料聚集物;然而,HJ 的全局构象是不利的动态的。在这里,通过使用物理吸附在玻璃上的片状 DNA 折纸结构(DOC)限制其位置和方向,选择性地调整 HJ 的全局构象。 HJ 臂通过四个不同设计的双螺旋间角度(IDA)固定。原子力显微镜证实,具有调谐 IDA 的 HJ 与 DOC 表面结合。通过结合偶极成像和超分辨率显微镜确定染料取向分布。所有 IDA 都导致染料取向沿着垂直于 HJ 平面的平面具有分散分布,这表明在染料和相邻 DNA 碱基之间发生了堆积。通过增加核心腔的大小来支持染料-碱基堆积的解释。最窄的 IDA 最小化了结构异质性并表明染料插入。 IDA 和染料在 HJ 平面上的取向之间存在很强的相关性。这些结果表明 HJ 对染料施加限制,并且无论全局构象如何,染料-DNA 相互作用始终存在。我们的结果对使用 DNA 自组装可扩展染料聚集物的意义进行了讨论。我们的方法为在固定支持的单分子水平上对分子组装进行单分子表征提供了途径,这些组装物模板化在生物分子上,例如参与光捕获和催化的 DNA 和蛋白质模板,其构象可调谐,位置和方向受限。