Suppr超能文献

基于圆排列的内容感知图片拼贴。

Content-aware photo collage using circle packing.

机构信息

Nanjing University, Nanjing.

Shandong University, Jinan.

出版信息

IEEE Trans Vis Comput Graph. 2014 Feb;20(2):182-95. doi: 10.1109/TVCG.2013.106.

Abstract

In this paper, we present a novel approach for automatically creating the photo collage that assembles the interest regions of a given group of images naturally. Previous methods on photo collage are generally built upon a well-defined optimization framework, which computes all the geometric parameters and layer indices for input photos on the given canvas by optimizing a unified objective function. The complex nonlinear form of optimization function limits their scalability and efficiency. From the geometric point of view, we recast the generation of collage as a region partition problem such that each image is displayed in its corresponding region partitioned from the canvas. The core of this is an efficient power-diagram-based circle packing algorithm that arranges a series of circles assigned to input photos compactly in the given canvas. To favor important photos, the circles are associated with image importances determined by an image ranking process. A heuristic search process is developed to ensure that salient information of each photo is displayed in the polygonal area resulting from circle packing. With our new formulation, each factor influencing the state of a photo is optimized in an independent stage, and computation of the optimal states for neighboring photos are completely decoupled. This improves the scalability of collage results and ensures their diversity. We also devise a saliency-based image fusion scheme to generate seamless compositive collage. Our approach can generate the collages on nonrectangular canvases and supports interactive collage that allows the user to refine collage results according to his/her personal preferences. We conduct extensive experiments and show the superiority of our algorithm by comparing against previous methods.

摘要

在本文中,我们提出了一种新颖的方法,用于自动创建照片拼贴,自然地组合给定图像组的兴趣区域。以前的照片拼贴方法通常基于定义明确的优化框架,该框架通过优化统一的目标函数来计算给定画布上输入照片的所有几何参数和层索引。优化函数的复杂非线性形式限制了它们的可扩展性和效率。从几何角度来看,我们将拼贴的生成重新表述为区域划分问题,使得每个图像都显示在从画布划分的相应区域中。这一核心是一种高效的基于幂图的圆排列算法,该算法将一系列分配给输入照片的圆紧凑地排列在给定的画布中。为了支持重要的照片,这些圆与通过图像排序过程确定的图像重要性相关联。开发了一种启发式搜索过程,以确保每个照片的显著信息都显示在圆排列产生的多边形区域中。通过我们的新公式,影响照片状态的每个因素都在独立的阶段进行优化,并且相邻照片的最优状态的计算是完全解耦的。这提高了拼贴结果的可扩展性,并确保了它们的多样性。我们还设计了一种基于显著度的图像融合方案,以生成无缝的组合式拼贴。我们的方法可以在非矩形画布上生成拼贴,并支持交互式拼贴,用户可以根据自己的喜好来细化拼贴结果。我们进行了广泛的实验,并通过与以前的方法进行比较,展示了我们算法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验