Suppr超能文献

利用 CheckMyMetal 网络服务器验证大分子结构中的金属结合位点。

Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server.

机构信息

1] Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA. [2] Center for Structural Genomics of Infectious Diseases (CSGID) Consortium, USA.

1] Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA. [2] Center for Structural Genomics of Infectious Diseases (CSGID) Consortium, USA. [3] Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.

出版信息

Nat Protoc. 2014 Jan;9(1):156-70. doi: 10.1038/nprot.2013.172. Epub 2013 Dec 19.

Abstract

Metals have vital roles in both the mechanism and architecture of biological macromolecules. Yet structures of metal-containing macromolecules in which metals are misidentified and/or suboptimally modeled are abundant in the Protein Data Bank (PDB). This shows the need for a diagnostic tool to identify and correct such modeling problems with metal-binding environments. The CheckMyMetal (CMM) web server (http://csgid.org/csgid/metal_sites/) is a sophisticated, user-friendly web-based method to evaluate metal-binding sites in macromolecular structures using parameters derived from 7,350 metal-binding sites observed in a benchmark data set of 2,304 high-resolution crystal structures. The protocol outlines how the CMM server can be used to detect geometric and other irregularities in the structures of metal-binding sites, as well as how it can alert researchers to potential errors in metal assignment. The protocol also gives practical guidelines for correcting problematic sites by modifying the metal-binding environment and/or redefining metal identity in the PDB file. Several examples where this has led to meaningful results are described in the ANTICIPATED RESULTS section. CMM was designed for a broad audience--biomedical researchers studying metal-containing proteins and nucleic acids--but it is equally well suited for structural biologists validating new structures during modeling or refinement. The CMM server takes the coordinates of a metal-containing macromolecule structure in the PDB format as input and responds within a few seconds for a typical protein structure with 2-5 metal sites and a few hundred amino acids.

摘要

金属在生物大分子的机制和结构中都起着至关重要的作用。然而,在蛋白质数据库(PDB)中,存在大量金属含量大分子的结构,其中金属被错误识别和/或建模不当。这表明需要一种诊断工具来识别和纠正金属结合环境的此类建模问题。CheckMyMetal(CMM)服务器(http://csgid.org/csgid/metal_sites/)是一种复杂而用户友好的基于网络的方法,用于使用从 2304 个高分辨率晶体结构的基准数据集观察到的 7350 个金属结合位点中得出的参数来评估大分子结构中的金属结合位点。该方案概述了如何使用 CMM 服务器检测金属结合位点结构中的几何和其他不规则性,以及如何提醒研究人员注意金属分配中的潜在错误。该方案还为通过修改金属结合环境和/或在 PDB 文件中重新定义金属身份来纠正有问题的站点提供了实用的指导方针。在预期结果部分描述了几个导致有意义结果的示例。CMM 是为广大研究金属结合蛋白和核酸的生物医学研究人员设计的,但它同样适合在建模或精修过程中验证新结构的结构生物学家。CMM 服务器以 PDB 格式的含金属大分子结构坐标作为输入,对于具有 2-5 个金属位点和几百个氨基酸的典型蛋白质结构,响应时间在几秒钟内。

相似文献

1
Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server.
Nat Protoc. 2014 Jan;9(1):156-70. doi: 10.1038/nprot.2013.172. Epub 2013 Dec 19.
2
CheckMyMetal: a macromolecular metal-binding validation tool.
Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):223-233. doi: 10.1107/S2059798317001061. Epub 2017 Feb 22.
3
CheckMyMetal (CMM): validating metal-binding sites in X-ray and cryo-EM data.
IUCrJ. 2024 Sep 1;11(Pt 5):871-877. doi: 10.1107/S2052252524007073.
4
CMM-An enhanced platform for interactive validation of metal binding sites.
Protein Sci. 2023 Jan;32(1):e4525. doi: 10.1002/pro.4525.
5
pKNOT: the protein KNOT web server.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W420-4. doi: 10.1093/nar/gkm304. Epub 2007 May 25.
7
Development of tools and database for analysis of metal binding sites in protein.
Protein Pept Lett. 2010 Jun;17(6):765-73. doi: 10.2174/092986610791190246.
8
ProBiS-2012: web server and web services for detection of structurally similar binding sites in proteins.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W214-21. doi: 10.1093/nar/gks435. Epub 2012 May 16.
9
PDB-tools web: A user-friendly interface for the manipulation of PDB files.
Proteins. 2021 Mar;89(3):330-335. doi: 10.1002/prot.26018. Epub 2020 Nov 7.
10
ANCHOR: web server for predicting protein binding regions in disordered proteins.
Bioinformatics. 2009 Oct 15;25(20):2745-6. doi: 10.1093/bioinformatics/btp518. Epub 2009 Aug 28.

引用本文的文献

1
Structural basis for the evolution of a domesticated group II intron-like reverse transcriptase to function in host cell DNA repair.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2504208122. doi: 10.1073/pnas.2504208122. Epub 2025 Jul 29.
2
MIC: A deep learning tool for assigning ions and waters in cryo-EM and crystal structures.
Nat Commun. 2025 Jul 4;16(1):6182. doi: 10.1038/s41467-025-61315-x.
5
Activity Regulation of a Glutamine Amidotransferase Bienzyme Complex by Substrate-Induced Subunit Interface Expansion.
ACS Catal. 2025 Mar 7;15(5):4359-4373. doi: 10.1021/acscatal.4c07438. Epub 2025 Feb 26.
7
Structural basis of substrate specificity of AMP deaminase and a chimeric ADGF adenosine deaminase.
bioRxiv. 2025 Mar 27:2025.03.26.645602. doi: 10.1101/2025.03.26.645602.
9
Carbohydrate Deacetylase Unique to Gut Microbe Bacteroides Reveals Atypical Structure.
Biochemistry. 2025 Jan 7;64(1):180-191. doi: 10.1021/acs.biochem.4c00519. Epub 2024 Dec 11.
10
Improving macromolecular structure refinement with metal-coordination restraints.
Acta Crystallogr D Struct Biol. 2024 Dec 1;80(Pt 12):821-833. doi: 10.1107/S2059798324011458. Epub 2024 Dec 3.

本文引用的文献

1
Investigation of non-corrin cobalt(II)-containing sites in protein structures of the Protein Data Bank.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2013 Apr;69(Pt 2):176-83. doi: 10.1107/S2052519213002959. Epub 2013 Feb 26.
2
Advances, interactions, and future developments in the CNS, Phenix, and Rosetta structural biology software systems.
Annu Rev Biophys. 2013;42:265-87. doi: 10.1146/annurev-biophys-083012-130253. Epub 2013 Feb 28.
3
Visualizing ligand molecules in Twilight electron density.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Feb 1;69(Pt 2):195-200. doi: 10.1107/S1744309112044387. Epub 2013 Jan 19.
4
Expectation bias and information content.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Feb 1;69(Pt 2):83. doi: 10.1107/S1744309113001486. Epub 2013 Jan 19.
5
Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures.
Acta Crystallogr D Biol Crystallogr. 2013 Feb;69(Pt 2):150-67. doi: 10.1107/S0907444912044423. Epub 2013 Jan 19.
6
MetalPDB: a database of metal sites in biological macromolecular structures.
Nucleic Acids Res. 2013 Jan;41(Database issue):D312-9. doi: 10.1093/nar/gks1063. Epub 2012 Nov 15.
7
Analysis of copper-ligand bond lengths in X-ray structures of different types of copper sites in proteins.
Acta Crystallogr D Biol Crystallogr. 2012 Sep;68(Pt 9):1223-31. doi: 10.1107/S0907444912026054. Epub 2012 Aug 18.
8
High-resolution structure of Bombyx mori lipoprotein 7: crystallographic determination of the identity of the protein and its potential role in detoxification.
Acta Crystallogr D Biol Crystallogr. 2012 Sep;68(Pt 9):1140-51. doi: 10.1107/S0907444912021555. Epub 2012 Aug 18.
9
Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20579-84. doi: 10.1073/pnas.1110712108. Epub 2011 Dec 7.
10
Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28.
Nat Struct Mol Biol. 2011 Dec 11;19(1):84-9. doi: 10.1038/nsmb.2202.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验