Department of Biomedical Engineering.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):498-503. doi: 10.1073/pnas.1217645111. Epub 2013 Dec 19.
Pyramidal neuron (PN) dendrites compartmentalize voltage signals and can generate local spikes, which has led to the proposal that their dendrites act as independent computational subunits within a multilayered processing scheme. However, when a PN is strongly activated, back-propagating action potentials (bAPs) sweeping outward from the soma synchronize dendritic membrane potentials many times per second. How PN dendrites maintain the independence of their voltage-dependent computations, despite these repeated voltage resets, remains unknown. Using a detailed compartmental model of a layer 5 PN, and an improved method for quantifying subunit independence that incorporates a more accurate model of dendritic integration, we first established that the output of each dendrite can be almost perfectly predicted by the intensity and spatial configuration of its own synaptic inputs, and is nearly invariant to the rate of bAP-mediated "cross-talk" from other dendrites over a 100-fold range. Then, through an analysis of conductance, voltage, and current waveforms within the model cell, we identify three biophysical mechanisms that together help make independent dendritic computation possible in a firing neuron, suggesting that a major subtype of neocortical neuron has been optimized for layered, compartmentalized processing under in-vivo-like spiking conditions.
锥体神经元 (PN) 的树突分隔电压信号,并能产生局部尖峰,这导致了一个假设,即它们的树突在一个多层次处理方案中充当独立的计算亚单位。然而,当一个 PN 被强烈激活时,从胞体向外传播的逆行动作电位 (bAP) 每秒多次同步树突膜电位。尽管这些重复的电压重置,PN 树突如何保持其电压依赖性计算的独立性仍然未知。我们使用一个详细的第 5 层 PN 分室模型,以及一种改进的方法来量化亚单位独立性,该方法结合了更准确的树突整合模型,我们首先确定每个树突的输出几乎可以通过其自身突触输入的强度和空间配置来进行几乎完美的预测,并且对来自其他树突的 bAP 介导的“串扰”的速率具有近不变性,在 100 倍的范围内。然后,通过对模型细胞内的电导、电压和电流波形进行分析,我们确定了三种生物物理机制,它们共同有助于使放电神经元中的独立树突计算成为可能,这表明一种主要的新皮质神经元亚型已经针对在类似于体内的放电条件下进行分层、分室处理进行了优化。
Proc Natl Acad Sci U S A. 2013-12-19
PLoS Comput Biol. 2012-7-19
J Neurosci. 2010-9-29
Proc Natl Acad Sci U S A. 2021-7-27
PLoS Comput Biol. 2012-6-14
bioRxiv. 2024-12-19
J Physiol. 2023-8
Front Comput Neurosci. 2020-7-8
Nat Neurosci. 2013-10-27
Nature. 2012-10-28
PLoS Comput Biol. 2012-7-19
PLoS Comput Biol. 2012-6-14
PLoS One. 2012-4-20
Front Synaptic Neurosci. 2011-8-29
Neuron. 2011-8-11