文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

细胞内镁通过重新配置其连接来优化海马突触的传递效率和可塑性。

Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity.

机构信息

Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China.

Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

出版信息

Nat Commun. 2024 Apr 22;15(1):3406. doi: 10.1038/s41467-024-47571-3.


DOI:10.1038/s41467-024-47571-3
PMID:38649706
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11035601/
Abstract

Synapses at dendritic branches exhibit specific properties for information processing. However, how the synapses are orchestrated to dynamically modify their properties, thus optimizing information processing, remains elusive. Here, we observed at hippocampal dendritic branches diverse configurations of synaptic connectivity, two extremes of which are characterized by low transmission efficiency, high plasticity and coding capacity, or inversely. The former favors information encoding, pertinent to learning, while the latter prefers information storage, relevant to memory. Presynaptic intracellular Mg crucially mediates the dynamic transition continuously between the two extreme configurations. Consequently, varying intracellular Mg levels endow individual branches with diverse synaptic computations, thus modulating their ability to process information. Notably, elevating brain Mg levels in aging animals restores synaptic configuration resembling that of young animals, coincident with improved learning and memory. These findings establish intracellular Mg as a crucial factor reconfiguring synaptic connectivity at dendrites, thus optimizing their branch-specific properties in information processing.

摘要

树突分支上的突触表现出特定的信息处理特性。然而,突触是如何协调以动态改变其特性,从而优化信息处理的,这仍然难以捉摸。在这里,我们在海马树突分支上观察到了多样化的突触连接模式,其中两种极端模式的特点是低传输效率、高可塑性和编码能力,或者相反。前者有利于学习相关的信息编码,而后者则有利于记忆相关的信息存储。胞内镁离子在前突触中起着关键的中介作用,使两种极端模式之间可以进行动态转换。因此,不同的胞内镁离子水平赋予了各个分支多样化的突触计算能力,从而调节了它们处理信息的能力。值得注意的是,在老年动物中提高脑内镁水平可以恢复类似于年轻动物的突触结构,同时改善学习和记忆能力。这些发现确立了胞内镁作为一种关键因素,可以重新配置树突上的突触连接,从而优化其在信息处理方面的分支特异性特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/c98392666178/41467_2024_47571_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/51f3f5f3fa29/41467_2024_47571_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/9dbda65e01fe/41467_2024_47571_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/dab74c263532/41467_2024_47571_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/b950d20a5fa5/41467_2024_47571_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/91ee8dec7ee7/41467_2024_47571_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/34a2f99e178d/41467_2024_47571_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/b684be457519/41467_2024_47571_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/c98392666178/41467_2024_47571_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/51f3f5f3fa29/41467_2024_47571_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/9dbda65e01fe/41467_2024_47571_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/dab74c263532/41467_2024_47571_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/b950d20a5fa5/41467_2024_47571_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/91ee8dec7ee7/41467_2024_47571_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/34a2f99e178d/41467_2024_47571_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/b684be457519/41467_2024_47571_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/11035601/c98392666178/41467_2024_47571_Fig8_HTML.jpg

相似文献

[1]
Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity.

Nat Commun. 2024-4-22

[2]
Activity-dependent Wnt 7 dendritic targeting in hippocampal neurons: plasticity- and tagging-related retrograde signaling mechanism?

Hippocampus. 2014-4

[3]
Cooperative LTP can map memory sequences on dendritic branches.

Trends Neurosci. 2004-2

[4]
Ageing, hippocampal synaptic activity and magnesium.

Magnes Res. 2006-9

[5]
Persistent but Labile Synaptic Plasticity at Excitatory Synapses.

J Neurosci. 2018-5-25

[6]
Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites.

Nat Neurosci. 2004-4

[7]
Dendritic excitability and synaptic plasticity.

Physiol Rev. 2008-4

[8]
Bidirectional synaptic plasticity rapidly modifies hippocampal representations.

Elife. 2021-12-9

[9]
A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity.

Neuron. 2007-12-6

[10]
Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity.

J Neurosci. 2006-2-8

引用本文的文献

[1]
Reward-optimizing learning using stochastic release plasticity.

Front Neural Circuits. 2025-8-14

[2]
CDK5-mediated hyperphosphorylation of Tau217 impairs neuronal synaptic structure and exacerbates cognitive impairment in Alzheimer's disease.

Transl Psychiatry. 2025-8-21

[3]
Controlled Magnesium Ion Delivery via Mg-Sputtered Nerve Conduit for Enhancing Peripheral Nerve Regeneration.

Adv Healthc Mater. 2025-8

[4]
Nutritional Support of Chronic Obstructive Pulmonary Disease.

Nutrients. 2025-3-26

[5]
Neuroprotective effects of magnesium: implications for neuroinflammation and cognitive decline.

Front Endocrinol (Lausanne). 2024

[6]
Magnesium-L-threonate improves sleep quality and daytime functioning in adults with self-reported sleep problems: A randomized controlled trial.

Sleep Med X. 2024-8-17

本文引用的文献

[1]
Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons.

Neuron. 2022-9-7

[2]
Ultrastructural analysis of dendritic spine necks reveals a continuum of spine morphologies.

Dev Neurobiol. 2021-7

[3]
Heterosynaptic cross-talk of pre- and postsynaptic strengths along segments of dendrites.

Cell Rep. 2021-1-26

[4]
Structure and function of a neocortical synapse.

Nature. 2021-3

[5]
My Neighbour Hetero-deconstructing the mechanisms underlying heterosynaptic plasticity.

Curr Opin Neurobiol. 2021-4

[6]
L-Threonic Acid Magnesium Salt Supplementation in ADHD: An Open-Label Pilot Study.

J Diet Suppl. 2021

[7]
Structural basis for the clamping and Ca activation of SNARE-mediated fusion by synaptotagmin.

Nat Commun. 2019-6-3

[8]
CaImAn an open source tool for scalable calcium imaging data analysis.

Elife. 2019-1-17

[9]
A Distance-Dependent Distribution of Presynaptic Boutons Tunes Frequency-Dependent Dendritic Integration.

Neuron. 2018-7-5

[10]
Locally coordinated synaptic plasticity of visual cortex neurons in vivo.

Science. 2018-6-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索