Suppr超能文献

蛋白酪氨酸磷酸酶的序列选择性和催化效率的不同水平。

Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases.

机构信息

Department of Chemistry and Biochemistry, The Ohio State University , 484 West 12th Avenue, Columbus, Ohio 43210, United States.

出版信息

Biochemistry. 2014 Jan 21;53(2):397-412. doi: 10.1021/bi401223r. Epub 2014 Jan 7.

Abstract

The sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >10(5)-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >10(5)-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3-18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A cocrystal structure of PTP1B bound with a nephrin pY(1193) peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities, and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed.

摘要

14 种经典蛋白酪氨酸磷酸酶(PTPs)(PTPRA、PTPRB、PTPRC、PTPRD、PTPRO、PTP1B、SHP-1、SHP-2、HePTP、PTP-PEST、TCPTP、PTPH1、PTPD1 和 PTPD2)的序列选择性通过筛选其催化结构域对组合肽文库进行了系统分析。所有 PTP 都表现出对富含酸性氨基酸的 pY 肽的相似偏好,不喜欢带正电荷的序列,但在偏好/不喜欢程度上有很大差异。一些 PTP(PTP-PEST、SHP-1 和 SHP-2)对酸性肽(碱性或中性)的选择性很高(>10^5 倍),而其他 PTP(PTPRA 和 PTPRD)则没有或几乎没有序列选择性。PTP 还具有不同的固有催化效率(针对最佳底物的 kcat/KM 值),由于 kcat 和/或 KM 值不同,相差>10^5 倍。此外,PTP 对相对于 pY 残基的酸性残基没有位置偏好。位于结合底物的 pY-1 和 pY-2 残基附近的 PTP1B 的 Arg47 突变使所有含有 pY-6 到 pY+5 区域内任何位置酸性残基的 pY 底物的酶活性降低了 3-18 倍。同样,位于结合底物 C 末端附近的 Arg24 突变也会对所有酸性底物的动力学活性产生不利影响。PTP1B 与 nephrin pY(1193)肽结合的共晶结构表明 Arg24 与 pY+1、pY+2 上的酸性残基以及可能的其他位置发生静电相互作用。这些结果表明,位于 PTP 活性位点附近的带正电荷残基与 pY 底物上的酸性残基之间的长程静电相互作用允许 PTP 以相似的亲和力结合酸性底物,不同 PTP 对酸性序列的偏好程度不同可能是由于其活性位点附近的静电势不同所致。讨论了不同序列选择性和固有催化活性对 PTP 体内底物特异性和生物学功能的影响。

相似文献

1
Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases.
Biochemistry. 2014 Jan 21;53(2):397-412. doi: 10.1021/bi401223r. Epub 2014 Jan 7.
2
Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2.
Biochemistry. 2011 Mar 29;50(12):2339-56. doi: 10.1021/bi1014453. Epub 2011 Feb 18.
5
Sequence specificity of SHP-1 and SHP-2 Src homology 2 domains. Critical roles of residues beyond the pY+3 position.
J Biol Chem. 2006 Jul 21;281(29):20271-82. doi: 10.1074/jbc.M601047200. Epub 2006 May 15.
6
Defining SH2 domain and PTP specificity by screening combinatorial peptide libraries.
Methods. 2007 Jul;42(3):207-19. doi: 10.1016/j.ymeth.2007.02.010.
7
Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1.
J Biol Chem. 1998 Oct 23;273(43):28199-207. doi: 10.1074/jbc.273.43.28199.
8
Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation.
J Mol Biol. 2001 Aug 17;311(3):557-68. doi: 10.1006/jmbi.2001.4890.
9
Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition.
Biochemistry. 2000 Jul 18;39(28):8171-9. doi: 10.1021/bi000319w.

引用本文的文献

1
Multipartite Fluorogenic Sensors for Monitoring Tyrosine Phosphatase Activity.
Chembiochem. 2024 Dec 16;25(24):e202400607. doi: 10.1002/cbic.202400607. Epub 2024 Nov 14.
2
Mapping the Chemical Space of Active-Site Targeted Covalent Ligands for Protein Tyrosine Phosphatases.
Chembiochem. 2023 May 16;24(10):e202200706. doi: 10.1002/cbic.202200706. Epub 2023 Apr 26.
4
Tyrosine phosphatase activity is restricted by basic charge substituting mutation of substrates.
Sci Rep. 2022 Sep 5;12(1):15095. doi: 10.1038/s41598-022-19133-4.
5
Substrate-selective positive allosteric modulation of PTPRD's phosphatase by flavonols.
Biochem Pharmacol. 2022 Aug;202:115109. doi: 10.1016/j.bcp.2022.115109. Epub 2022 May 28.
9
Antibody:CD47 ratio regulates macrophage phagocytosis through competitive receptor phosphorylation.
Cell Rep. 2021 Aug 24;36(8):109587. doi: 10.1016/j.celrep.2021.109587.

本文引用的文献

1
Profiling the substrate specificity of protein kinases by on-bead screening of peptide libraries.
Biochemistry. 2013 Aug 20;52(33):5645-55. doi: 10.1021/bi4008947. Epub 2013 Jul 24.
2
Specificity profiling of protein phosphatases toward phosphoseryl and phosphothreonyl peptides.
J Am Chem Soc. 2013 Jul 3;135(26):9760-7. doi: 10.1021/ja401692t. Epub 2013 Jun 20.
3
Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction.
FEBS J. 2013 Jan;280(2):346-78. doi: 10.1111/febs.12077. Epub 2013 Jan 17.
4
Protein tyrosine phosphatases in health and disease.
FEBS J. 2013 Jan;280(2):708-30. doi: 10.1111/febs.12000. Epub 2012 Oct 1.
5
Identification and functional characterization of p130Cas as a substrate of protein tyrosine phosphatase nonreceptor 14.
Oncogene. 2013 Apr 18;32(16):2087-95. doi: 10.1038/onc.2012.220. Epub 2012 Jun 18.
7
Podocyte Protein, Nephrin, Is a Substrate of Protein Tyrosine Phosphatase 1B.
J Signal Transduct. 2011;2011:376543. doi: 10.1155/2011/376543. Epub 2011 Oct 15.
9
Presenting your structures: the CCP4mg molecular-graphics software.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):386-94. doi: 10.1107/S0907444911007281. Epub 2011 Mar 18.
10
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验