Department of Chemistry and Biochemistry, The Ohio State University , 484 West 12th Avenue, Columbus, Ohio 43210, United States.
Biochemistry. 2014 Jan 21;53(2):397-412. doi: 10.1021/bi401223r. Epub 2014 Jan 7.
The sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >10(5)-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >10(5)-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3-18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A cocrystal structure of PTP1B bound with a nephrin pY(1193) peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities, and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed.
14 种经典蛋白酪氨酸磷酸酶(PTPs)(PTPRA、PTPRB、PTPRC、PTPRD、PTPRO、PTP1B、SHP-1、SHP-2、HePTP、PTP-PEST、TCPTP、PTPH1、PTPD1 和 PTPD2)的序列选择性通过筛选其催化结构域对组合肽文库进行了系统分析。所有 PTP 都表现出对富含酸性氨基酸的 pY 肽的相似偏好,不喜欢带正电荷的序列,但在偏好/不喜欢程度上有很大差异。一些 PTP(PTP-PEST、SHP-1 和 SHP-2)对酸性肽(碱性或中性)的选择性很高(>10^5 倍),而其他 PTP(PTPRA 和 PTPRD)则没有或几乎没有序列选择性。PTP 还具有不同的固有催化效率(针对最佳底物的 kcat/KM 值),由于 kcat 和/或 KM 值不同,相差>10^5 倍。此外,PTP 对相对于 pY 残基的酸性残基没有位置偏好。位于结合底物的 pY-1 和 pY-2 残基附近的 PTP1B 的 Arg47 突变使所有含有 pY-6 到 pY+5 区域内任何位置酸性残基的 pY 底物的酶活性降低了 3-18 倍。同样,位于结合底物 C 末端附近的 Arg24 突变也会对所有酸性底物的动力学活性产生不利影响。PTP1B 与 nephrin pY(1193)肽结合的共晶结构表明 Arg24 与 pY+1、pY+2 上的酸性残基以及可能的其他位置发生静电相互作用。这些结果表明,位于 PTP 活性位点附近的带正电荷残基与 pY 底物上的酸性残基之间的长程静电相互作用允许 PTP 以相似的亲和力结合酸性底物,不同 PTP 对酸性序列的偏好程度不同可能是由于其活性位点附近的静电势不同所致。讨论了不同序列选择性和固有催化活性对 PTP 体内底物特异性和生物学功能的影响。