Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.
J Chem Phys. 2013 Dec 21;139(23):234110. doi: 10.1063/1.4846297.
We present a method for fitting high-dimensional potential energy surfaces that is almost fully automated, can be applied to systems with various chemical compositions, and involves no particular choice of function form. We tested it on four systems: Ag20, Sn6Pb6, Si10, and Li8. The cost for energy evaluation is smaller than the cost of a density functional theory (DFT) energy evaluation by a factor of 1500 for Li8, and 60,000 for Ag20. We achieved intermediate accuracy (errors of 0.4 to 0.8 eV on atomization energies, or, 1% to 3% on cohesive energies) with rather small datasets (between 240 and 1400 configurations). We demonstrate that this accuracy is sufficient to correctly screen the configurations with lowest DFT energy, making this function potentially very useful in a hybrid global optimization strategy. We show that, as expected, the accuracy of the function improves with an increase in the size of the fitting dataset.
我们提出了一种几乎完全自动化的拟合高维势能面的方法,可应用于具有各种化学成分的系统,并且不涉及特定的函数形式选择。我们在四个系统上进行了测试:Ag20、Sn6Pb6、Si10 和 Li8。对于 Li8,能量评估的成本比密度泛函理论(DFT)能量评估的成本小 1500 倍,对于 Ag20,成本小 60000 倍。我们使用相当小的数据集(240 到 1400 个构型之间)实现了中等精度(原子化能的误差为 0.4 到 0.8eV,或结合能的误差为 1%到 3%)。我们证明了这种精度足以正确筛选具有最低 DFT 能量的构型,这使得该函数在混合全局优化策略中具有很大的潜力。我们表明,正如预期的那样,函数的精度随着拟合数据集的大小的增加而提高。