Suppr超能文献

肌肉纤维的被动特性是速度依赖性的。

The passive properties of muscle fibers are velocity dependent.

机构信息

Biomedical Engineering, University of Virginia, PO Box 800759, Health system, Charlottesville, VA 22908, United States.

Biomedical Engineering, University of Virginia, PO Box 800759, Health system, Charlottesville, VA 22908, United States; Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22908, United States.

出版信息

J Biomech. 2014 Feb 7;47(3):687-93. doi: 10.1016/j.jbiomech.2013.11.044. Epub 2013 Dec 3.

Abstract

The passive properties of skeletal muscle play an important role in muscle function. While the passive quasi-static elastic properties of muscle fibers have been well characterized, the dynamic visco-elastic passive behavior of fibers has garnered less attention. In particular, it is unclear how the visco-elastic properties are influenced by lengthening velocity, in particular for the range of physiologically relevant velocities. The goals of this work were to: (i) measure the effects of lengthening velocity on the peak stresses within single muscle fibers to determine how passive behavior changes over a range of physiologically relevant lengthening rates (0.1-10Lo/s), and (ii) develop a mathematical model of fiber viscoelasticity based on these measurements. We found that passive properties depend on strain rate, in particular at the low loading rates (0.1-3Lo/s), and that the measured behavior can be predicted across a range of loading rates and time histories with a quasi-linear viscoelastic model. In the future, these results can be used to determine the impact of viscoelastic behavior on intramuscular stresses and forces during a variety of dynamic movements.

摘要

骨骼肌的被动特性在肌肉功能中起着重要作用。虽然肌肉纤维的被动准静态弹性特性已经得到很好的描述,但纤维的动态黏弹性被动行为却受到较少关注。特别是,在生理相关速度范围内,黏弹性特性如何受到伸长速度的影响尚不清楚。这项工作的目的是:(i)测量伸长速度对单个肌肉纤维内峰值应力的影响,以确定被动行为在一系列生理相关伸长率(0.1-10Lo/s)范围内的变化;(ii)基于这些测量结果,建立纤维黏弹性的数学模型。我们发现,被动特性取决于应变率,特别是在低加载速率(0.1-3Lo/s)下,并且可以使用准线性黏弹性模型来预测在一系列加载速率和时间历史下的测量行为。未来,这些结果可用于确定在各种动态运动中黏弹性行为对肌内应力和力的影响。

相似文献

1
The passive properties of muscle fibers are velocity dependent.
J Biomech. 2014 Feb 7;47(3):687-93. doi: 10.1016/j.jbiomech.2013.11.044. Epub 2013 Dec 3.
2
Viscous elements have little impact on measured passive length-tension properties of human gastrocnemius muscle-tendon units in vivo.
J Biomech. 2011 Apr 29;44(7):1334-9. doi: 10.1016/j.jbiomech.2011.01.005. Epub 2011 Feb 1.
4
A nonlinear model of passive muscle viscosity.
J Biomech Eng. 2011 Sep;133(9):091007. doi: 10.1115/1.4004993.
5
Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.
J Biomech. 2008;41(7):1555-66. doi: 10.1016/j.jbiomech.2008.02.007. Epub 2008 Apr 8.
6
Theoretical elastic tensile behavior of muscle fiber bundles in traumatic loading events.
Clin Biomech (Bristol). 2019 Oct;69:184-190. doi: 10.1016/j.clinbiomech.2019.07.021. Epub 2019 Jul 23.
7
A novel constitutive model of skeletal muscle taking into account anisotropic damage.
J Mech Behav Biomed Mater. 2010 Jan;3(1):85-93. doi: 10.1016/j.jmbbm.2009.05.001. Epub 2009 May 13.
8
Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
Acta Biomater. 2022 Oct 15;152:290-299. doi: 10.1016/j.actbio.2022.08.043. Epub 2022 Aug 24.
9
Sarcomeric visco-elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest.
J Muscle Res Cell Motil. 2001;22(5):399-414. doi: 10.1023/a:1014502610259.

引用本文的文献

2
Linking myosin heavy chain isoform shift to mechanical properties and fracture modes in skeletal muscle tissue.
Biomech Model Mechanobiol. 2024 Feb;23(1):103-116. doi: 10.1007/s10237-023-01761-y. Epub 2023 Aug 12.
3
Structure-Function relationships in the skeletal muscle extracellular matrix.
J Biomech. 2023 May;152:111593. doi: 10.1016/j.jbiomech.2023.111593. Epub 2023 Apr 17.
4
Systematic review of skeletal muscle passive mechanics experimental methodology.
J Biomech. 2021 Dec 2;129:110839. doi: 10.1016/j.jbiomech.2021.110839. Epub 2021 Oct 26.
6
Photoreactive Hydrogel Stiffness Influences Volumetric Muscle Loss Repair.
Tissue Eng Part A. 2022 Apr;28(7-8):312-329. doi: 10.1089/ten.TEA.2021.0137. Epub 2022 Jan 4.
7
How muscle stiffness affects human body model behavior.
Biomed Eng Online. 2021 Jun 2;20(1):53. doi: 10.1186/s12938-021-00876-6.
8
Reliability of isokinetic tests of velocity- and contraction intensity-dependent plantar flexor mechanical properties.
Scand J Med Sci Sports. 2021 May;31(5):1009-1025. doi: 10.1111/sms.13920. Epub 2021 Mar 23.
9
Investigating Passive Muscle Mechanics With Biaxial Stretch.
Front Physiol. 2020 Aug 20;11:1021. doi: 10.3389/fphys.2020.01021. eCollection 2020.
10
Indirect actuation reduces flight power requirements in via elastic energy exchange.
J R Soc Interface. 2019 Dec;16(161):20190543. doi: 10.1098/rsif.2019.0543. Epub 2019 Dec 18.

本文引用的文献

1
Passive skeletal muscle response to impact loading: experimental testing and inverse modelling.
J Mech Behav Biomed Mater. 2013 Nov;27:214-25. doi: 10.1016/j.jmbbm.2013.04.016. Epub 2013 May 9.
2
Are titin properties reflected in single myofibrils?
J Biomech. 2012 Jul 26;45(11):1893-9. doi: 10.1016/j.jbiomech.2012.05.021. Epub 2012 Jun 5.
3
Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction.
J Biomech. 2012 Feb 23;45(4):647-52. doi: 10.1016/j.jbiomech.2011.12.015. Epub 2012 Jan 10.
4
A nonlinear model of passive muscle viscosity.
J Biomech Eng. 2011 Sep;133(9):091007. doi: 10.1115/1.4004993.
5
Muscle power attenuation by tendon during energy dissipation.
Proc Biol Sci. 2012 Mar 22;279(1731):1108-13. doi: 10.1098/rspb.2011.1435. Epub 2011 Sep 28.
6
The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model.
J Biomech. 2010 Sep 17;43(13):2574-81. doi: 10.1016/j.jbiomech.2010.05.011. Epub 2010 Jun 11.
7
Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/Ca2+ in skinned myocardium.
J Biomed Biotechnol. 2010;2010:727239. doi: 10.1155/2010/727239. Epub 2010 Apr 14.
8
Tuning passive mechanics through differential splicing of titin during skeletal muscle development.
Biophys J. 2009 Oct 21;97(8):2277-86. doi: 10.1016/j.bpj.2009.07.041.
9
The transient relationship between pressure and volume in the pediatric pulmonary system.
J Biomech. 2009 Aug 7;42(11):1656-63. doi: 10.1016/j.jbiomech.2009.04.027. Epub 2009 Jun 3.
10
MR observations of long-term musculotendon remodeling following a hamstring strain injury.
Skeletal Radiol. 2008 Dec;37(12):1101-9. doi: 10.1007/s00256-008-0546-0. Epub 2008 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验