Suppr超能文献

I 型干扰素反应的调节。

Regulation of type I interferon responses.

机构信息

1] Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York 10021, USA. [2] Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065, USA. [3] Department of Medicine, Weill Cornell Medical College, New York, New York 10065,USA.

Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York 10021, USA.

出版信息

Nat Rev Immunol. 2014 Jan;14(1):36-49. doi: 10.1038/nri3581.

Abstract

Type I interferons (IFNs) activate intracellular antimicrobial programmes and influence the development of innate and adaptive immune responses. Canonical type I IFN signalling activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, leading to transcription of IFN-stimulated genes (ISGs). Host, pathogen and environmental factors regulate the responses of cells to this signalling pathway and thus calibrate host defences while limiting tissue damage and preventing autoimmunity. Here, we summarize the signalling and epigenetic mechanisms that regulate type I IFN-induced STAT activation and ISG transcription and translation. These regulatory mechanisms determine the biological outcomes of type I IFN responses and whether pathogens are cleared effectively or chronic infection or autoimmune disease ensues.

摘要

I 型干扰素 (IFNs) 激活细胞内抗菌程序,并影响先天和适应性免疫反应的发展。经典的 I 型 IFN 信号激活 Janus 激酶 (JAK)-信号转导和转录激活因子 (STAT) 途径,导致 IFN 刺激基因 (ISGs) 的转录。宿主、病原体和环境因素调节细胞对这种信号通路的反应,从而在限制组织损伤和预防自身免疫的同时,调节宿主防御。在这里,我们总结了调节 I 型 IFN 诱导的 STAT 激活和 ISG 转录和翻译的信号和表观遗传机制。这些调节机制决定了 I 型 IFN 反应的生物学结果,以及病原体是否被有效清除,还是会导致慢性感染或自身免疫性疾病。

相似文献

1
Regulation of type I interferon responses.
Nat Rev Immunol. 2014 Jan;14(1):36-49. doi: 10.1038/nri3581.
2
The Cross-Regulation Between Autophagy and Type I Interferon Signaling in Host Defense.
Adv Exp Med Biol. 2019;1209:125-144. doi: 10.1007/978-981-15-0606-2_8.
3
Regulation of type I interferon signaling in immunity and inflammation: A comprehensive review.
J Autoimmun. 2017 Sep;83:1-11. doi: 10.1016/j.jaut.2017.03.008. Epub 2017 Mar 19.
5
Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways.
Front Immunol. 2020 Nov 23;11:606456. doi: 10.3389/fimmu.2020.606456. eCollection 2020.
6
Interferon target-gene expression and epigenomic signatures in health and disease.
Nat Immunol. 2019 Dec;20(12):1574-1583. doi: 10.1038/s41590-019-0466-2. Epub 2019 Nov 19.
8
The Molecular Basis of Viral Inhibition of IRF- and STAT-Dependent Immune Responses.
Front Immunol. 2019 Jan 8;9:3086. doi: 10.3389/fimmu.2018.03086. eCollection 2018.
9
The multifaceted biology of plasmacytoid dendritic cells.
Nat Rev Immunol. 2015 Aug;15(8):471-85. doi: 10.1038/nri3865. Epub 2015 Jul 10.

引用本文的文献

2
The Role of Gut Microbiota in the Modulation of Pulmonary Immune Response to Viral Infection Through the Gut-Lung Axis.
J Inflamm Res. 2025 Aug 26;18:11755-11781. doi: 10.2147/JIR.S525880. eCollection 2025.
3
triggers type I interferon signaling to promote host defense against infection via mTORC1 activation.
Biochem Biophys Rep. 2025 Aug 26;44:102213. doi: 10.1016/j.bbrep.2025.102213. eCollection 2025 Dec.
4
Epigenetic control of tissue resident memory T cells.
Front Immunol. 2025 Aug 15;16:1605972. doi: 10.3389/fimmu.2025.1605972. eCollection 2025.
5
DFFB suppresses interferon to enable cancer persister cell regrowth.
bioRxiv. 2025 Aug 21:2025.08.15.670603. doi: 10.1101/2025.08.15.670603.
8
Deciphering the mechanistic roles of ADARs in cancer pathogenesis, tumor immune evasion, and drug resistance.
Front Immunol. 2025 Aug 7;16:1621585. doi: 10.3389/fimmu.2025.1621585. eCollection 2025.
9
Cancer-induced nerve injury promotes resistance to anti-PD-1 therapy.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09370-8.
10
De novo protein-coding gene variants in developmental stuttering.
Mol Psychiatry. 2025 Aug 20. doi: 10.1038/s41380-025-03170-2.

本文引用的文献

1
IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage.
EMBO J. 2013 Oct 16;32(20):2751-63. doi: 10.1038/emboj.2013.203. Epub 2013 Sep 24.
3
PTPN22 in autoimmunity: different cell and different way.
Immunity. 2013 Jul 25;39(1):91-3. doi: 10.1016/j.immuni.2013.07.007.
4
The human RVB complex is required for efficient transcription of type I interferon-stimulated genes.
Mol Cell Biol. 2013 Oct;33(19):3817-25. doi: 10.1128/MCB.01562-12. Epub 2013 Jul 22.
5
Structural basis of a unique interferon-β signaling axis mediated via the receptor IFNAR1.
Nat Immunol. 2013 Sep;14(9):901-7. doi: 10.1038/ni.2667. Epub 2013 Jul 21.
6
The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity.
Immunity. 2013 Jul 25;39(1):111-22. doi: 10.1016/j.immuni.2013.06.013. Epub 2013 Jul 18.
8
Double-stranded RNA of intestinal commensal but not pathogenic bacteria triggers production of protective interferon-β.
Immunity. 2013 Jun 27;38(6):1187-97. doi: 10.1016/j.immuni.2013.02.024. Epub 2013 Jun 20.
9
Fine tuning type I interferon responses.
Cytokine Growth Factor Rev. 2013 Jun;24(3):217-25. doi: 10.1016/j.cytogfr.2013.04.002. Epub 2013 May 25.
10
Immune sensing of DNA.
Immunity. 2013 May 23;38(5):870-80. doi: 10.1016/j.immuni.2013.05.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验