Verbeke Tobin J, Spicer Vic, Krokhin Oleg V, Zhang Xiangli, Schellenberg John J, Fristensky Brian, Wilkins John A, Levin David B, Sparling Richard
Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
Appl Environ Microbiol. 2014 Mar;80(5):1602-15. doi: 10.1128/AEM.03555-13. Epub 2013 Dec 20.
Thermoanaerobacter spp. have long been considered suitable Clostridium thermocellum coculture partners for improving lignocellulosic biofuel production through consolidated bioprocessing. However, studies using "omic"-based profiling to better understand carbon utilization and biofuel producing pathways have been limited to only a few strains thus far. To better characterize carbon and electron flux pathways in the recently isolated, xylanolytic strain, Thermoanaerobacter thermohydrosulfuricus WC1, label-free quantitative proteomic analyses were combined with metabolic profiling. SWATH-MS proteomic analysis quantified 832 proteins in each of six proteomes isolated from mid-exponential-phase cells grown on xylose, cellobiose, or a mixture of both. Despite encoding genes consistent with a carbon catabolite repression network observed in other Gram-positive organisms, simultaneous consumption of both substrates was observed. Lactate was the major end product of fermentation under all conditions despite the high expression of gene products involved with ethanol and/or acetate synthesis, suggesting that carbon flux in this strain may be controlled via metabolite-based (allosteric) regulation or is constrained by metabolic bottlenecks. Cross-species "omic" comparative analyses confirmed similar expression patterns for end-product-forming gene products across diverse Thermoanaerobacter spp. It also identified differences in cofactor metabolism, which potentially contribute to differences in end-product distribution patterns between the strains analyzed. The analyses presented here improve our understanding of T. thermohydrosulfuricus WC1 metabolism and identify important physiological limitations to be addressed in its development as a biotechnologically relevant strain in ethanologenic designer cocultures through consolidated bioprocessing.
长期以来,嗜热栖热菌一直被认为是适合与热纤梭菌共培养的伙伴,用于通过联合生物加工提高木质纤维素生物燃料的产量。然而,迄今为止,使用基于“组学”的分析方法来更好地理解碳利用和生物燃料生产途径的研究仅限于少数几个菌株。为了更好地表征最近分离出的木聚糖分解菌株嗜热栖热硫杆菌WC1中的碳和电子通量途径,将无标记定量蛋白质组学分析与代谢分析相结合。SWATH-MS蛋白质组学分析对从在木糖、纤维二糖或两者混合物上生长的指数中期细胞中分离出的六个蛋白质组中的每一个中的832种蛋白质进行了定量。尽管该菌株编码的基因与在其他革兰氏阳性生物中观察到的碳分解代谢物阻遏网络一致,但仍观察到两种底物的同时消耗。尽管参与乙醇和/或乙酸合成的基因产物高表达,但乳酸仍是所有条件下发酵的主要终产物,这表明该菌株中的碳通量可能通过基于代谢物的(变构)调节来控制,或者受到代谢瓶颈的限制。跨物种“组学”比较分析证实了不同嗜热栖热菌属中终产物形成基因产物的相似表达模式。它还确定了辅因子代谢的差异,这可能导致所分析菌株之间终产物分布模式的差异。本文所做的分析增进了我们对嗜热栖热硫杆菌WC1代谢的理解,并确定了在通过联合生物加工将其开发为乙醇生产设计共培养物中具有生物技术相关性的菌株时需要解决的重要生理限制。