Suppr超能文献

电子分支参与了以葡萄糖或 H2+CO2 为生长基质的产乙酸菌 Moorella thermoacetica 的能量代谢。

Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2.

机构信息

Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

出版信息

J Bacteriol. 2012 Jul;194(14):3689-99. doi: 10.1128/JB.00385-12. Epub 2012 May 11.

Abstract

Moorella thermoacetica ferments glucose to three acetic acids. In the oxidative part of the fermentation, the hexose is converted to 2 acetic acids and 2 CO(2) molecules with the formation of 2 NADH and 2 reduced ferredoxin (Fd(red)(2-)) molecules. In the reductive part, 2 CO(2) molecules are reduced to acetic acid, consuming the 8 reducing equivalents generated in the oxidative part. An open question is how the two parts are electronically connected, since two of the four oxidoreductases involved in acetogenesis from CO(2) are NADP specific rather than NAD specific. We report here that the 2 NADPH molecules required for CO(2) reduction to acetic acid are generated by the reduction of 2 NADP(+) molecules with 1 NADH and 1 Fd(red)(2-) catalyzed by the electron-bifurcating NADH-dependent reduced ferredoxin:NADP(+) oxidoreductase (NfnAB). The cytoplasmic iron-sulfur flavoprotein was heterologously produced in Escherichia coli, purified, and characterized. The purified enzyme was composed of 30-kDa (NfnA) and 50-kDa (NfnB) subunits in a 1-to-1 stoichiometry. NfnA harbors a [2Fe2S] cluster and flavin adenine dinucleotide (FAD), and NfnB harbors two [4Fe4S] clusters and FAD. M. thermoacetica contains a second electron-bifurcating enzyme. Cell extracts catalyzed the coupled reduction of NAD(+) and Fd with 2 H(2) molecules. The specific activity of this cytoplasmic enzyme was 3-fold higher in H(2)-CO(2)-grown cells than in glucose-grown cells. The function of this electron-bifurcating hydrogenase is not yet clear, since H(2)-CO(2)-grown cells additionally contain high specific activities of an NADP(+)-dependent hydrogenase that catalyzes the reduction of NADP(+) with H(2). This activity is hardly detectable in glucose-grown cells.

摘要

热醋穆尔氏菌将葡萄糖发酵为三种乙酸。在发酵的氧化部分,六碳糖转化为 2 种乙酸和 2 个 CO2 分子,形成 2 个 NADH 和 2 个还原型铁氧还蛋白(Fd(red)(2-))分子。在还原部分,2 个 CO2 分子还原为乙酸,消耗氧化部分产生的 8 个还原当量。一个悬而未决的问题是两个部分如何在电子上连接,因为参与 CO2 生成乙酸的 4 种氧化还原酶中有 2 种是 NADP 特异性的,而不是 NAD 特异性的。我们在这里报告,用于将 CO2 还原为乙酸的 2 个 NADPH 分子是由电子分叉 NADH 依赖的还原型铁氧还蛋白:NADP+氧化还原酶(NfnAB)催化 1 个 NADH 和 1 个 Fd(red)(2-)还原 2 个 NADP+分子产生的。细胞质铁硫黄素蛋白在大肠杆菌中异源产生、纯化和表征。纯化的酶由 30kDa(NfnA)和 50kDa(NfnB)亚基以 1:1 的比例组成。NfnA 含有[2Fe2S]簇和黄素腺嘌呤二核苷酸(FAD),NfnB 含有两个[4Fe4S]簇和 FAD。M. thermoacetica 含有第二种电子分叉酶。细胞提取物催化 NAD(+)和 Fd 与 2 H2 分子的偶联还原。与葡萄糖生长细胞相比,在 H2-CO2 生长细胞中这种细胞质酶的比活提高了 3 倍。这种电子分叉氢化酶的功能尚不清楚,因为 H2-CO2 生长细胞还含有高比活的 NADP(+)依赖氢化酶,它催化 NADP(+)与 H2 的还原。在葡萄糖生长细胞中几乎检测不到这种活性。

相似文献

2
A reversible electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica.
J Bacteriol. 2013 Mar;195(6):1267-75. doi: 10.1128/JB.02158-12. Epub 2013 Jan 11.
4
A novel hexameric NADP -reducing [FeFe] hydrogenase from Moorella thermoacetica.
FEBS J. 2024 Feb;291(3):596-608. doi: 10.1111/febs.16989. Epub 2023 Nov 7.
6
Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure.
J Biol Chem. 2015 Sep 4;290(36):21985-95. doi: 10.1074/jbc.M115.656520. Epub 2015 Jul 2.
9
Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica.
J Bacteriol. 2014 Sep;196(18):3303-14. doi: 10.1128/JB.01839-14. Epub 2014 Jul 7.

引用本文的文献

1
A distinct class of ferredoxin:NADP oxidoreductase enzymes driving thermophilic ethanol production.
J Biol Chem. 2025 May 21;301(7):110263. doi: 10.1016/j.jbc.2025.110263.
3
Methanol and Carbon Monoxide Metabolism of the Thermophile Moorella caeni.
Environ Microbiol. 2025 Apr;27(4):e70096. doi: 10.1111/1462-2920.70096.
5
Engineered acetogenic bacteria as microbial cell factory for diversified biochemicals.
Front Bioeng Biotechnol. 2024 Jul 11;12:1395540. doi: 10.3389/fbioe.2024.1395540. eCollection 2024.
7
Lipid Peroxidation-Related Redox Signaling in Osteosarcoma.
Int J Mol Sci. 2024 Apr 22;25(8):4559. doi: 10.3390/ijms25084559.
10
Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0109023. doi: 10.1128/aem.01090-23. Epub 2024 Jan 23.

本文引用的文献

2
Metal-metal bonds in biology.
J Inorg Biochem. 2012 Jan;106(1):172-8. doi: 10.1016/j.jinorgbio.2011.08.012. Epub 2011 Aug 26.
4
Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation.
FEBS Lett. 2012 Mar 9;586(5):485-93. doi: 10.1016/j.febslet.2011.09.031. Epub 2011 Oct 1.
5
Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.
PLoS One. 2011;6(8):e23716. doi: 10.1371/journal.pone.0023716. Epub 2011 Aug 15.
6
A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea.
Front Microbiol. 2011 Apr 19;2:69. doi: 10.3389/fmicb.2011.00069. eCollection 2011.
7
Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea.
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2981-6. doi: 10.1073/pnas.1016761108. Epub 2011 Jan 24.
8
Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes.
Cell Mol Life Sci. 2011 Feb;68(4):613-34. doi: 10.1007/s00018-010-0555-8. Epub 2010 Nov 12.
10
Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18138-42. doi: 10.1073/pnas.1010318107. Epub 2010 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验