Suppr超能文献

协同菌群介导的共生纤维素发酵生产乙醇工艺:植物发酵梭菌/酵母共培养。

Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture.

机构信息

Current address: The Pennsylvania State University, 158 Fenske Laboratory, University Park, PA, 16802, USA.

出版信息

Biotechnol Biofuels. 2013 Apr 29;6(1):59. doi: 10.1186/1754-6834-6-59.

Abstract

BACKGROUND

Lignocellulosic ethanol is a viable alternative to petroleum-based fuels with the added benefit of potentially lower greenhouse gas emissions. Consolidated bioprocessing (simultaneous enzyme production, hydrolysis and fermentation; CBP) is thought to be a low-cost processing scheme for lignocellulosic ethanol production. However, no single organism has been developed which is capable of high productivity, yield and titer ethanol production directly from lignocellulose. Consortia of cellulolytic and ethanologenic organisms could be an attractive alternate to the typical single organism approaches but implementation of consortia has a number of challenges (e.g., control, stability, productivity).

RESULTS

Ethanol is produced from α-cellulose using a consortium of C. phytofermentans and yeast that is maintained by controlled oxygen transport. Both Saccharomyces cerevisiae cdt-1 and Candida molischiana "protect" C. phytofermentans from introduced oxygen in return for soluble sugars released by C. phytofermentans hydrolysis. Only co-cultures were able to degrade filter paper when mono- and co-cultures were incubated at 30°C under semi-aerobic conditions. Using controlled oxygen delivery by diffusion through neoprene tubing at a calculated rate of approximately 8 μmol/L hour, we demonstrate establishment of the symbiotic relationship between C. phytofermentans and S. cerevisiae cdt-1 and maintenance of populations of 105 to 106 CFU/mL for 50 days. Comparable symbiotic population dynamics were observed in scaled up 500 mL bioreactors as those in 50 mL shake cultures. The conversion of α-cellulose to ethanol was shown to improve with additional cellulase indicating a limitation in hydrolysis rate. A co-culture of C. phytofermentans and S. cerevisiae cdt-1 with added endoglucanase produced approximately 22 g/L ethanol from 100 g/L α-cellulose compared to C. phytofermentans and S. cerevisiae cdt-1 mono-cultures which produced approximately 6 and 9 g/L, respectively.

CONCLUSION

This work represents a significant step toward developing consortia-based bioprocessing systems for lignocellulosic biofuels production which utilize scalable, environmentally-mediated symbiosis mechanisms to provide consortium stability.

摘要

背景

木质纤维素乙醇是一种可行的石油基燃料替代品,其潜在的温室气体排放量更低。整合生物加工(同时进行酶生产、水解和发酵;CBP)被认为是一种低成本的木质纤维素乙醇生产加工方案。然而,尚未开发出能够直接从木质纤维素中生产高生产力、高产量和高浓度乙醇的单一生物体。纤维素分解菌和产乙醇菌的共生体可以作为典型的单一生物体方法的替代方案,但共生体的实施存在许多挑战(例如,控制、稳定性、生产力)。

结果

使用通过控制氧气传输来维持的 C. phytofermentans 和酵母共生体从α-纤维素中生产乙醇。酿酒酵母 cdt-1 和 Candida molischiana“保护”C. phytofermentans 免受引入的氧气,以换取 C. phytofermentans 水解释放的可溶性糖。仅在半需氧条件下 30°C 孵育时,共培养物才能降解滤纸,而单培养物和共培养物都不能降解滤纸。通过在计算出的约 8 μmol/L 小时的速率下通过氯丁橡胶管扩散来控制氧气输送,我们证明了 C. phytofermentans 和酿酒酵母 cdt-1 之间共生关系的建立,并维持了 105 到 106 CFU/mL 的种群 50 天。在 500 毫升生物反应器中放大的共生群体动力学与在 50 毫升摇瓶培养物中的动力学相当。从 100 g/Lα-纤维素到 22 g/L 乙醇的转化率提高表明水解速率存在限制。添加内切葡聚糖酶的 C. phytofermentans 和酿酒酵母 cdt-1 共培养物产生的乙醇量约为 22 g/L,而 C. phytofermentans 和酿酒酵母 cdt-1 单培养物分别产生约 6 和 9 g/L。

结论

这项工作代表着朝着开发基于共生体的木质纤维素生物燃料生产生物加工系统迈出了重要的一步,该系统利用可扩展的、环境介导的共生机制提供共生体稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/039b/3653780/5cd1592231ae/1754-6834-6-59-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验