1] Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA [2].
1] Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA [2] Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA [3].
Nature. 2014 Feb 6;506(7486):111-5. doi: 10.1038/nature12824. Epub 2013 Dec 22.
Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA-DNA, and acting in an RNA-DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure-function studies of human APTX-RNA-DNA-AMP-Zn complexes define a mechanism for detecting and reversing adenylation at RNA-DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA-DNA may contribute to neurological disease.
真核生物基因组的忠实维持和复制是由 ATP 依赖的 DNA 连接酶的三步 DNA 连接反应来保证的。矛盾的是,当 DNA 连接酶遇到带有异常 DNA 末端的切口 DNA 结构时,DNA 连接酶的催化活性可以通过产生和/或加剧 DNA 损伤来产生,这种损伤通过无功能连接产生具有化学加合物的有毒 5'-腺嘌呤化(5'-AMP)DNA 损伤。 Aprataxin(APTX)可以逆转 DNA 腺苷酸化,但脱腺苷化修复的背景尚不清楚。在这里,我们研究了 APTX 对 RNase-H2 依赖性切除修复(RER)的重要性,这种修复经常发生在 DNA 中,即核苷酸。我们表明,连接酶产生含有核糖的腺嘌呤化 5' 末端,这是 RNase H2 切割的特征。APTX 有效地修复腺嘌呤化的 RNA-DNA,并在 RNA-DNA 损伤反应(RDDR)中发挥作用,促进细胞存活,并防止经历 RER 的芽殖酵母中 S 期检查点的激活。人 APTX-RNA-DNA-AMP-Zn 复合物的结构功能研究定义了一种检测和逆转 RNA-DNA 连接处腺苷酸化的机制。这涉及 A 型 RNA 结合、正确的蛋白质折叠和构象变化,所有这些都受遗传性 APTX 突变在共济失调伴眼动不能 1 中的影响。总之,这些结果表明,腺嘌呤化的 RNA-DNA 的积累可能导致神经疾病。