Suppr超能文献

植物在根表面合成铁纳米复合物,以对抗过量的离子铁并使其植物稳定化。

Plants fabricate Fe-nanocomplexes at root surface to counter and phytostabilize excess ionic Fe.

作者信息

Pardha-Saradhi P, Yamal G, Peddisetty Tanuj, Sharmila P, Singh Jyoti, Nagarajan Rajamani, Rao K S

机构信息

Department of Environmental Studies, University of Delhi, Delhi, 110007, India,

出版信息

Biometals. 2014 Feb;27(1):97-114. doi: 10.1007/s10534-013-9690-7. Epub 2013 Dec 21.

Abstract

While evaluating the impact of iron nanoparticles (NPs) on terrestrial plants we realized potential of root system of intact plants to form orange-brown complexes constituted of NPs around their roots and at bottom/side of tubes when exposed to FeCl3. These orange-brown complexes/plaques seen around roots were similar to that reported in wetland plants under iron toxicity. Transmission electron microscopy coupled with energy dispersive X-ray analysis revealed that orange-brown complexes/plaques, formed by root system of all 16 plant species from 11 distinct families tested, were constituted of NPs containing Fe. Selected area electron diffraction and powder X-ray diffraction spectra showed their amorphous nature. Thermogravimetric and fourier transform infra-red analysis showed that these Fe-NPs/nanocomplexes were composed of iron-oxyhydroxide. These plant species generated orange-brown Fe-NPs/nanocomplexes even under strict sterile conditions establishing inbuilt and independent potential of their root system to generate Fe-NPs. Root system of intact plants showed ferric chelate reductase activity responsible for reduction of Fe(3+) to Fe(2+). Reduction of potassium ferricyanide by root system of intact plants confirmed that root surface possess strong reducing strength, which could have played critical role in reduction of Fe(3+) and formation of Fe-NPs/nanocomplexes. Atomic absorption spectrophotometric analysis revealed that majority of iron was retained in Fe-nanocomplexes/plaques, while only 2-3 % was transferred to shoots, indicating formation of nanocomplexes is a phytostabilization mechanism evolved by plants to restrict uptake of iron above threshold levels. We believe that formation of Fe-NPs/nanocomplexes is an ideal homeostasis mechanism evolved by plants to modulate uptake of desired levels of ionic Fe.

摘要

在评估铁纳米颗粒(NPs)对陆生植物的影响时,我们发现完整植物的根系有潜力在接触FeCl3时在其根部周围以及试管底部/侧面形成由纳米颗粒构成的橙棕色复合物。在根部周围看到的这些橙棕色复合物/斑块类似于在铁毒性条件下湿地植物中报道的情况。透射电子显微镜与能量色散X射线分析相结合表明,所测试的来自11个不同科的16种植物的根系形成的橙棕色复合物/斑块是由含铁的纳米颗粒构成的。选区电子衍射和粉末X射线衍射光谱显示它们具有非晶态性质。热重分析和傅里叶变换红外分析表明,这些铁纳米颗粒/纳米复合物由羟基氧化铁组成。即使在严格的无菌条件下,这些植物物种也能产生橙棕色的铁纳米颗粒/纳米复合物,这表明它们的根系具有内在的、独立产生铁纳米颗粒的潜力。完整植物的根系表现出铁螯合物还原酶活性,负责将Fe(3+)还原为Fe(2+)。完整植物根系对铁氰化钾的还原证实了根表面具有很强的还原能力,这可能在Fe(3+)的还原和铁纳米颗粒/纳米复合物的形成中起关键作用。原子吸收分光光度分析表明,大部分铁保留在铁纳米复合物/斑块中,而只有2 - 3%转移到地上部分,这表明纳米复合物的形成是植物进化出的一种植物稳定机制,以限制铁的吸收超过阈值水平。我们认为,铁纳米颗粒/纳米复合物的形成是植物进化出的一种理想的内稳态机制,用于调节所需水平的离子铁的吸收。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验