Suppr超能文献

GPU 元风暴:使用 GPU 计算大量微生物群落样本之间的结构相似度。

GPU-Meta-Storms: computing the structure similarities among massive amount of microbial community samples using GPU.

机构信息

Shandong Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels and Bioenergy Genome Center, Computational Biology Group of Single Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.

出版信息

Bioinformatics. 2014 Apr 1;30(7):1031-3. doi: 10.1093/bioinformatics/btt736. Epub 2013 Dec 19.

Abstract

MOTIVATION

The number of microbial community samples is increasing with exponential speed. Data-mining among microbial community samples could facilitate the discovery of valuable biological information that is still hidden in the massive data. However, current methods for the comparison among microbial communities are limited by their ability to process large amount of samples each with complex community structure.

SUMMARY

We have developed an optimized GPU-based software, GPU-Meta-Storms, to efficiently measure the quantitative phylogenetic similarity among massive amount of microbial community samples. Our results have shown that GPU-Meta-Storms would be able to compute the pair-wise similarity scores for 10 240 samples within 20 min, which gained a speed-up of >17 000 times compared with single-core CPU, and >2600 times compared with 16-core CPU. Therefore, the high-performance of GPU-Meta-Storms could facilitate in-depth data mining among massive microbial community samples, and make the real-time analysis and monitoring of temporal or conditional changes for microbial communities possible.

AVAILABILITY AND IMPLEMENTATION

GPU-Meta-Storms is implemented by CUDA (Compute Unified Device Architecture) and C++. Source code is available at http://www.computationalbioenergy.org/meta-storms.html.

摘要

动机

微生物群落样本的数量正在以指数速度增长。对微生物群落样本进行数据挖掘可以促进有价值的生物信息的发现,这些信息仍然隐藏在海量数据中。然而,目前用于微生物群落比较的方法受到其处理大量具有复杂群落结构的样本的能力的限制。

摘要

我们开发了一种基于 GPU 的优化软件 GPU-Meta-Storms,用于高效测量大量微生物群落样本之间的定量系统发育相似性。我们的结果表明,GPU-Meta-Storms 将能够在 20 分钟内计算 10240 个样本的两两相似性得分,与单核 CPU 相比,速度提高了>17000 倍,与 16 核 CPU 相比,速度提高了>2600 倍。因此,GPU-Meta-Storms 的高性能可以促进对大量微生物群落样本进行深入的数据挖掘,并使微生物群落的时间或条件变化的实时分析和监测成为可能。

可用性和实现

GPU-Meta-Storms 通过 CUDA(计算统一设备架构)和 C++实现。源代码可在 http://www.computationalbioenergy.org/meta-storms.html 获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验