Suppr超能文献

图像处理算法在图形处理器上的性能评估。

Performance evaluation of image processing algorithms on the GPU.

作者信息

Castaño-Díez Daniel, Moser Dominik, Schoenegger Andreas, Pruggnaller Sabine, Frangakis Achilleas S

机构信息

Computational and Structural Biology, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany.

出版信息

J Struct Biol. 2008 Oct;164(1):153-60. doi: 10.1016/j.jsb.2008.07.006. Epub 2008 Jul 24.

Abstract

The graphics processing unit (GPU), which originally was used exclusively for visualization purposes, has evolved into an extremely powerful co-processor. In the meanwhile, through the development of elaborate interfaces, the GPU can be used to process data and deal with computationally intensive applications. The speed-up factors attained compared to the central processing unit (CPU) are dependent on the particular application, as the GPU architecture gives the best performance for algorithms that exhibit high data parallelism and high arithmetic intensity. Here, we evaluate the performance of the GPU on a number of common algorithms used for three-dimensional image processing. The algorithms were developed on a new software platform called "CUDA", which allows a direct translation from C code to the GPU. The implemented algorithms include spatial transformations, real-space and Fourier operations, as well as pattern recognition procedures, reconstruction algorithms and classification procedures. In our implementation, the direct porting of C code in the GPU achieves typical acceleration values in the order of 10-20 times compared to a state-of-the-art conventional processor, but they vary depending on the type of the algorithm. The gained speed-up comes with no additional costs, since the software runs on the GPU of the graphics card of common workstations.

摘要

图形处理单元(GPU)最初仅用于可视化目的,如今已发展成为功能极其强大的协处理器。与此同时,通过精心设计的接口开发,GPU可用于处理数据并应对计算密集型应用。与中央处理器(CPU)相比所实现的加速因子取决于具体应用,因为GPU架构对于展现出高数据并行度和高算术强度的算法能提供最佳性能。在此,我们评估GPU在一些用于三维图像处理的常见算法上的性能。这些算法是在一个名为“CUDA”的新软件平台上开发的,该平台允许将C代码直接转换到GPU上。所实现的算法包括空间变换、实空间和傅里叶运算,以及模式识别程序、重建算法和分类程序。在我们的实现中,与最先进的传统处理器相比,在GPU中直接移植C代码可实现典型的10到20倍的加速值,但它们会因算法类型而异。所获得的加速无需额外成本,因为该软件可在普通工作站显卡的GPU上运行。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验