Coffey Christopher S, Kairalla John A, Muller Keith E
Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA.
Commun Stat Theory Methods. 2007;36(11). doi: 10.1080/03610920601143634.
New analytic forms for distributions at the heart of internal pilot theory solve many problems inherent to current techniques for linear models with Gaussian errors. Internal pilot designs use a fraction of the data to re-estimate the error variance and modify the final sample size. Too small or too large a sample size caused by an incorrect planning variance can be avoided. However, the usual hypothesis test may need adjustment to control the Type I error rate. A bounding test achieves control of Type I error rate while providing most of the advantages of the unadjusted test. Unfortunately, the presence of both a doubly truncated and an untruncated chi-square random variable complicates the theory and computations. An expression for the density of the sum of the two chi-squares gives a simple form for the test statistic density. Examples illustrate that the new results make the bounding test practical by providing very stable, convergent, and much more accurate computations. Furthermore, the new computational methods are effectively never slower and usually much faster. All results apply to any univariate linear model with fixed predictors and Gaussian errors, with the t-test a special case.
内部试点理论核心分布的新分析形式解决了当前具有高斯误差的线性模型技术所固有的许多问题。内部试点设计使用一部分数据来重新估计误差方差并修改最终样本量。可以避免因计划方差不正确而导致样本量过小或过大的情况。然而,通常的假设检验可能需要调整以控制I型错误率。一种边界检验在控制I型错误率的同时提供了未经调整检验的大部分优点。不幸的是,同时存在双截断和未截断的卡方随机变量使理论和计算变得复杂。两个卡方之和的密度表达式给出了检验统计量密度的简单形式。示例表明,新结果通过提供非常稳定、收敛且更准确的计算,使边界检验变得切实可行。此外,新的计算方法实际上绝不会更慢,而且通常要快得多。所有结果适用于任何具有固定预测变量和高斯误差的单变量线性模型,t检验是一个特例。