Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
Department of Health Outcomes and Policy, University of Florida, Gainesville, FL, USA.
Stat Med. 2018 Feb 10;37(3):375-389. doi: 10.1002/sim.7524. Epub 2017 Nov 21.
Repeated measures are common in clinical trials and epidemiological studies. Designing studies with repeated measures requires reasonably accurate specifications of the variances and correlations to select an appropriate sample size. Underspecifying the variances leads to a sample size that is inadequate to detect a meaningful scientific difference, while overspecifying the variances results in an unnecessarily large sample size. Both lead to wasting resources and placing study participants in unwarranted risk. An internal pilot design allows sample size recalculation based on estimates of the nuisance parameters in the covariance matrix. We provide the theoretical results that account for the stochastic nature of the final sample size in a common class of linear mixed models. The results are useful for designing studies with repeated measures and balanced design. Simulations examine the impact of misspecification of the covariance matrix and demonstrate the accuracy of the approximations in controlling the type I error rate and achieving the target power. The proposed methods are applied to a longitudinal study assessing early antiretroviral therapy for youth living with HIV.
重复测量在临床试验和流行病学研究中很常见。设计具有重复测量的研究需要合理准确地指定方差和相关性,以选择适当的样本量。方差指定不足会导致样本量不足以检测出有意义的科学差异,而方差指定过多则会导致不必要的大样本量。这两者都会导致浪费资源和使研究参与者面临不必要的风险。内部先导设计允许根据协方差矩阵中的干扰参数的估计值重新计算样本量。我们提供了理论结果,这些结果考虑了常见的线性混合模型类中最终样本量的随机性质。这些结果对于设计具有重复测量和平衡设计的研究很有用。模拟研究检查了协方差矩阵的指定错误对样本量的影响,并证明了这些近似值在控制Ⅰ型错误率和实现目标功效方面的准确性。所提出的方法应用于一项评估青少年艾滋病毒感染者早期抗逆转录病毒治疗的纵向研究。