Nanoelectrochemistry laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology , Taipei, Taiwan 10607.
J Am Chem Soc. 2014 Jan 22;136(3):999-1007. doi: 10.1021/ja410137s. Epub 2014 Jan 8.
High-capacity layered, lithium-rich oxide cathodes show great promise for use as positive electrode materials for rechargeable lithium ion batteries. Understanding the effects of oxygen activating reactions on the cathode's surface during electrochemical cycling can lead to improvements in stability and performance. We used in situ surfaced-enhanced Raman spectroscopy (SERS) to observe the oxygen-related surface reactions that occur during electrochemical cycling on lithium-rich cathodes. Here, we demonstrate the direct observation of Li2O formation during the extended plateau and discuss the consequences of its formation on the cathode and anode. The formation of Li2O on the cathode leads to the formation of species related to the generation of H2O together with LiOH and to changes within the electrolyte, which eventually result in diminished performance. Protection from, or mitigation of, such devastating surface reactions on both electrodes will be necessary to help realize the potential of high-capacity cathode materials (270 mAhg(-1) versus 140 mAhg(-1) for LiCoO2) for practical applications.
高容量层状富锂氧化物正极材料在可充电锂离子电池中具有很大的应用潜力。了解电化学循环过程中正极表面氧激活反应的影响,可以提高其稳定性和性能。我们使用原位表面增强拉曼光谱(SERS)来观察富锂正极在电化学循环过程中发生的与氧相关的表面反应。在这里,我们直接观察到在扩展平台期间 Li2O 的形成,并讨论了其在正极和负极上形成的后果。正极上 Li2O 的形成导致与 H2O 生成相关的物质以及 LiOH 的形成,以及电解质内的变化,最终导致性能下降。为了实现高容量正极材料(相对于 LiCoO2 的 270 mAhg(-1)和 140 mAhg(-1))的实际应用,需要对两个电极的这种破坏性表面反应进行防护或缓解。