Suppr超能文献

串联踝关节弹性在双足行走中的作用。

The role of series ankle elasticity in bipedal walking.

作者信息

Zelik Karl E, Huang Tzu-Wei P, Adamczyk Peter G, Kuo Arthur D

机构信息

Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109, USA.

Intelligent Prosthetic Systems, LLC 2811 Lillian Rd, Ann Arbor, MI 48104, USA.

出版信息

J Theor Biol. 2014 Apr 7;346:75-85. doi: 10.1016/j.jtbi.2013.12.014. Epub 2013 Dec 21.

Abstract

The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses.

摘要

行走过程中跟腱的弹性拉伸-缩短循环可降低串联的跖屈肌的主动做功需求。然而,这并不能解释为何以及何时在步态中需要进行这种踝关节做功,无论是由肌肉还是肌腱完成。因此,我们采用一个简单的双足行走模型来研究踝关节做功和串联弹性如何影响经济的运动。我们的模型表明,踝关节弹性可利用被动动力学在单支撑后期辅助蹬离动作,使身体重心(COM)的运动向上重新定向。适时的弹性蹬离有助于减少对侧脚跟触地时的耗散性碰撞损失,从而减少抵消这些损失和维持稳定行走所需的正功。因此,该模型展示了弹性踝关节做功如何降低行走的总能量需求,包括来自更靠近身体近端的膝关节和髋关节肌肉所需的功。我们发现,利用踝关节弹性实现经济步态的关键要求是踝关节刚度与足长的适当比例。这些参数的最佳组合可确保在对侧脚跟触地之前适时释放弹性能量,并储存足够的能量以重新定向重心速度。事实上,存在理论上可实现无碰撞行走的参数组合,从而无需主动做功,尽管踝关节扭矩相对较高。踝关节弹性还可通过间接助力蹬离动作,使髋关节为经济的行走提供动力。无论行走是由踝关节还是髋关节提供动力,踝关节弹性都可能通过减少碰撞损失来辅助提高行走经济性。

相似文献

1
The role of series ankle elasticity in bipedal walking.
J Theor Biol. 2014 Apr 7;346:75-85. doi: 10.1016/j.jtbi.2013.12.014. Epub 2013 Dec 21.
2
Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
J Exp Biol. 2015 Nov;218(Pt 22):3541-50. doi: 10.1242/jeb.113910. Epub 2015 Sep 18.
3
The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.
Clin Biomech (Bristol). 2011 Nov;26(9):955-61. doi: 10.1016/j.clinbiomech.2011.05.007. Epub 2011 Jun 30.
7
Elastic coupling of limb joints enables faster bipedal walking.
J R Soc Interface. 2009 Jun 6;6(35):561-73. doi: 10.1098/rsif.2008.0415. Epub 2008 Oct 28.
10
A Simple Model to Estimate Plantarflexor Muscle-Tendon Mechanics and Energetics During Walking With Elastic Ankle Exoskeletons.
IEEE Trans Biomed Eng. 2016 May;63(5):914-923. doi: 10.1109/TBME.2015.2491224. Epub 2015 Oct 15.

引用本文的文献

3
Biomechanical effects of adding an articulating toe joint to a passive foot prosthesis for incline and decline walking.
PLoS One. 2024 May 17;19(5):e0295465. doi: 10.1371/journal.pone.0295465. eCollection 2024.
4
Current developments of robotic hip exoskeleton toward sensing, decision, and actuation: A review.
Wearable Technol. 2022 Jul 15;3:e15. doi: 10.1017/wtc.2022.11. eCollection 2022.
5
Simulations suggest walking with reduced propulsive force would not mitigate the energetic consequences of lower tendon stiffness.
PLoS One. 2023 Oct 26;18(10):e0293331. doi: 10.1371/journal.pone.0293331. eCollection 2023.
6
Variability and the form-function framework in evolutionary biomechanics and human locomotion.
Evol Hum Sci. 2022 Jul 7;4:e29. doi: 10.1017/ehs.2022.28. eCollection 2022.
8
Humans plan for the near future to walk economically on uneven terrain.
Proc Natl Acad Sci U S A. 2023 May 9;120(19):e2211405120. doi: 10.1073/pnas.2211405120. Epub 2023 May 1.
9
The collisional geometry of economical walking predicts human leg and foot segment proportions.
J R Soc Interface. 2023 Mar;20(200):20220800. doi: 10.1098/rsif.2022.0800. Epub 2023 Mar 22.
10
Optimization of energy and time predicts dynamic speeds for human walking.
Elife. 2023 Feb 13;12:e81939. doi: 10.7554/eLife.81939.

本文引用的文献

1
Mechanical and energetic consequences of rolling foot shape in human walking.
J Exp Biol. 2013 Jul 15;216(Pt 14):2722-31. doi: 10.1242/jeb.082347. Epub 2013 Apr 11.
2
Optimization of the visco-elastic parameters describing the heel-region of a prosthesis.
J Theor Biol. 2012 Oct 21;311:1-7. doi: 10.1016/j.jtbi.2012.06.023. Epub 2012 Jul 7.
3
The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.
Hum Mov Sci. 2012 Aug;31(4):918-31. doi: 10.1016/j.humov.2011.08.005. Epub 2011 Nov 17.
4
Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation.
Proc Biol Sci. 2012 Feb 7;279(1728):457-64. doi: 10.1098/rspb.2011.1194. Epub 2011 Jul 13.
5
The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.
Clin Biomech (Bristol). 2011 Nov;26(9):955-61. doi: 10.1016/j.clinbiomech.2011.05.007. Epub 2011 Jun 30.
6
Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.
IEEE Trans Neural Syst Rehabil Eng. 2011 Aug;19(4):411-9. doi: 10.1109/TNSRE.2011.2159018. Epub 2011 Jun 23.
7
Walking model with no energy cost.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):032901. doi: 10.1103/PhysRevE.83.032901. Epub 2011 Mar 8.
8
Flexible mechanisms: the diverse roles of biological springs in vertebrate movement.
J Exp Biol. 2011 Feb 1;214(Pt 3):353-61. doi: 10.1242/jeb.038588.
9
Mechanics and energetics of step-to-step transitions isolated from human walking.
J Exp Biol. 2010 Dec 15;213(Pt 24):4265-71. doi: 10.1242/jeb.044214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验