Suppr超能文献

仿生踝足假肢可使截肢者的步态正常化。

Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation.

机构信息

Biomechatronics Group, Media Laboratory, Massachusetts Institute of Technology, 75 Amherst Street E14-348U, Cambridge, MA 02139, USA.

出版信息

Proc Biol Sci. 2012 Feb 7;279(1728):457-64. doi: 10.1098/rspb.2011.1194. Epub 2011 Jul 13.

Abstract

Over time, leg prostheses have improved in design, but have been incapable of actively adapting to different walking velocities in a manner comparable to a biological limb. People with a leg amputation using such commercially available passive-elastic prostheses require significantly more metabolic energy to walk at the same velocities, prefer to walk slower and have abnormal biomechanics compared with non-amputees. A bionic prosthesis has been developed that emulates the function of a biological ankle during level-ground walking, specifically providing the net positive work required for a range of walking velocities. We compared metabolic energy costs, preferred velocities and biomechanical patterns of seven people with a unilateral transtibial amputation using the bionic prosthesis and using their own passive-elastic prosthesis to those of seven non-amputees during level-ground walking. Compared with using a passive-elastic prosthesis, using the bionic prosthesis decreased metabolic cost by 8 per cent, increased trailing prosthetic leg mechanical work by 57 per cent and decreased the leading biological leg mechanical work by 10 per cent, on average, across walking velocities of 0.75-1.75 m s(-1) and increased preferred walking velocity by 23 per cent. Using the bionic prosthesis resulted in metabolic energy costs, preferred walking velocities and biomechanical patterns that were not significantly different from people without an amputation.

摘要

随着时间的推移,腿部假肢在设计上不断改进,但仍无法像生物肢体那样主动适应不同的行走速度。使用这种市售的被动弹性假肢的截肢者在以相同速度行走时需要消耗更多的代谢能量,与非截肢者相比,他们更喜欢走得更慢,且生物力学模式异常。已经开发出一种仿生假肢,在平地行走时模拟生物踝关节的功能,特别是提供了一系列行走速度所需的净正功。我们比较了 7 名单侧胫骨截肢者使用仿生假肢和他们自己的被动弹性假肢与 7 名非截肢者在平地行走时的代谢能量成本、首选速度和生物力学模式。与使用被动弹性假肢相比,使用仿生假肢平均可使代谢成本降低 8%,使跟随假肢腿机械功增加 57%,使生物主导腿机械功减少 10%,在 0.75-1.75 m/s 的行走速度范围内,首选行走速度提高 23%。使用仿生假肢的代谢能量成本、首选行走速度和生物力学模式与未截肢者没有显著差异。

相似文献

1
Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation.
Proc Biol Sci. 2012 Feb 7;279(1728):457-64. doi: 10.1098/rspb.2011.1194. Epub 2011 Jul 13.
3
Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds?
Clin Orthop Relat Res. 2014 Oct;472(10):3044-54. doi: 10.1007/s11999-014-3647-1.
4
Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study.
Clin Biomech (Bristol). 2020 Jan;71:59-67. doi: 10.1016/j.clinbiomech.2019.10.028. Epub 2019 Oct 31.
5
Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses.
Prosthet Orthot Int. 2016 Jun;40(3):311-9. doi: 10.1177/0309364614564021. Epub 2015 Jan 27.
7
Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
Neural Netw. 2008 May;21(4):654-66. doi: 10.1016/j.neunet.2008.03.006. Epub 2008 Apr 26.
9
Energetic consequences of using a prosthesis with adaptive ankle motion during slope walking in persons with a transtibial amputation.
Prosthet Orthot Int. 2014 Feb;38(1):5-11. doi: 10.1177/0309364613481489. Epub 2013 Mar 22.
10

引用本文的文献

1
Design and Analysis of an Autonomous Active Ankle-Foot Prosthesis with 2-DoF.
Sensors (Basel). 2025 Aug 8;25(16):4881. doi: 10.3390/s25164881.
2
Propulsion without penalty: greater soleus force with stiffer footwear does not necessarily increase estimated soleus metabolic cost across walking speeds.
J Appl Physiol (1985). 2025 Aug 1;139(2):509-516. doi: 10.1152/japplphysiol.00045.2025. Epub 2025 Jul 18.
3
Model parameterization of robotic systems through the bio-inspired optimization.
PLoS One. 2025 Jun 4;20(6):e0325168. doi: 10.1371/journal.pone.0325168. eCollection 2025.
4
Design, Control, and Evaluation of a Robotic Ankle-Foot Prosthesis Emulator.
IEEE Trans Med Robot Bionics. 2023 Jun 30;5(3):741-752. doi: 10.1109/TMRB.2023.3291015.
5
Behavioural energetics in human locomotion: how energy use influences how we move.
J Exp Biol. 2025 Feb 15;228(Suppl_1). doi: 10.1242/jeb.248125. Epub 2025 Feb 20.
7
Transfer Learning for Efficient Intent Prediction in Lower-Limb Prosthetics: A Strategy for Limited Datasets.
IEEE Robot Autom Lett. 2024 May;9(5):4321-4328. doi: 10.1109/lra.2024.3379800. Epub 2024 Mar 20.
9
Continuous neural control of a bionic limb restores biomimetic gait after amputation.
Nat Med. 2024 Jul;30(7):2010-2019. doi: 10.1038/s41591-024-02994-9. Epub 2024 Jul 1.

本文引用的文献

1
Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.
Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1621-31. doi: 10.1098/rstb.2010.0347.
2
Mechanics and energetics of step-to-step transitions isolated from human walking.
J Exp Biol. 2010 Dec 15;213(Pt 24):4265-71. doi: 10.1242/jeb.044214.
3
Muscle contributions to whole-body sagittal plane angular momentum during walking.
J Biomech. 2011 Jan 4;44(1):6-12. doi: 10.1016/j.jbiomech.2010.08.015. Epub 2010 Sep 15.
4
Recycling energy to restore impaired ankle function during human walking.
PLoS One. 2010 Feb 17;5(2):e9307. doi: 10.1371/journal.pone.0009307.
5
Control of a powered ankle-foot prosthesis based on a neuromuscular model.
IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):164-73. doi: 10.1109/TNSRE.2009.2039620. Epub 2010 Jan 12.
6
Dynamic principles of gait and their clinical implications.
Phys Ther. 2010 Feb;90(2):157-74. doi: 10.2522/ptj.20090125. Epub 2009 Dec 18.
7
Prosthetic ankle-foot mechanism capable of automatic adaptation to the walking surface.
J Biomech Eng. 2009 Mar;131(3):035002. doi: 10.1115/1.3005335.
8
Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees.
Eur J Appl Physiol. 2008 Aug;103(6):655-63. doi: 10.1007/s00421-008-0764-0. Epub 2008 May 14.
9
Powered ankle-foot prosthesis for the improvement of amputee ambulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3020-6. doi: 10.1109/IEMBS.2007.4352965.
10
Muscles do more positive than negative work in human locomotion.
J Exp Biol. 2007 Oct;210(Pt 19):3361-73. doi: 10.1242/jeb.003970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验