Yu You, Zhou Mingze, Kirsch Franziska, Xu Congqiao, Zhang Li, Wang Yu, Jiang Zheng, Wang Na, Li Jun, Eitinger Thomas, Yang Maojun
1] MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany.
Cell Res. 2014 Mar;24(3):267-77. doi: 10.1038/cr.2013.172. Epub 2013 Dec 24.
The energy-coupling factor (ECF) transporters are multi-subunit protein complexes that mediate uptake of transition-metal ions and vitamins in about 50% of the prokaryotes, including bacteria and archaea. Biological and structural studies have been focused on ECF transporters for vitamins, but the molecular mechanism by which ECF systems transport metal ions from the environment remains unknown. Here we report the first crystal structure of a NikM, TtNikM2, the substrate-binding component (S component) of an ECF-type nickel transporter from Thermoanaerobacter tengcongensis. In contrast to the structures of the vitamin-specific S proteins with six transmembrane segments (TSs), TtNikM2 possesses an additional TS at its N-terminal region, resulting in an extracellular N-terminus. The highly conserved N-terminal loop inserts into the center of TtNikM2 and occludes a region corresponding to the substrate-binding sites of the vitamin-specific S components. Nickel binds to NikM via its coordination to four nitrogen atoms, which are derived from Met1, His2 and His67 residues. These nitrogen atoms form an approximately square-planar geometry, similar to that of the metal ion-binding sites in the amino-terminal Cu(2+)- and Ni(2+)-binding (ATCUN) motif. Replacements of residues in NikM contributing to nickel coordination compromised the Ni-transport activity. Furthermore, systematic quantum chemical investigation indicated that this geometry enables NikM to also selectively recognize Co(2+). Indeed, the structure of TtNikM2 containing a bound Co(2+) ion has almost no conformational change compared to the structure that contains a nickel ion. Together, our data reveal an evolutionarily conserved mechanism underlying the metal selectivity of EcfS proteins, and provide insights into the ion-translocation process mediated by ECF transporters.
能量偶联因子(ECF)转运蛋白是多亚基蛋白复合物,介导约50%的原核生物(包括细菌和古菌)摄取过渡金属离子和维生素。生物学和结构研究主要集中在维生素的ECF转运蛋白上,但ECF系统从环境中转运金属离子的分子机制仍不清楚。在此,我们报道了嗜热栖热菌(Thermoanaerobacter tengcongensis)的ECF型镍转运蛋白的底物结合组分(S组分)NikM(TtNikM2)的首个晶体结构。与具有六个跨膜区段(TSs)的维生素特异性S蛋白结构不同,TtNikM2在其N端区域有一个额外的TS,导致细胞外N端。高度保守的N端环插入TtNikM2的中心,并封闭了对应于维生素特异性S组分底物结合位点的区域。镍通过与来自Met1、His2和His67残基的四个氮原子配位而与NikM结合。这些氮原子形成近似平面正方形的几何结构,类似于氨基端铜(2+)和镍(2+)结合(ATCUN)基序中的金属离子结合位点。NikM中参与镍配位的残基替换会损害镍转运活性。此外,系统的量子化学研究表明,这种几何结构使NikM也能选择性识别Co(2+)。事实上, 与含有镍离子的结构相比,含有结合Co(2+)离子的TtNikM2结构几乎没有构象变化。总之,我们的数据揭示了EcfS蛋白金属选择性背后进化上保守的机制,并为ECF转运蛋白介导的离子转运过程提供了见解。