Suppr超能文献

脂质介导的 Ras 纳米簇空间串扰实现信号整合。

Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters.

机构信息

Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA.

出版信息

Mol Cell Biol. 2014 Mar;34(5):862-76. doi: 10.1128/MCB.01227-13. Epub 2013 Dec 23.

Abstract

Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing.

摘要

脂质锚定的 Ras GTPases 在质膜上形成瞬时的、空间分隔的纳米簇,对于高保真信号传递至关重要。然而,Ras 纳米簇的脂质组成以前尚未被研究过。高分辨率空间映射显示,不同的 Ras 纳米簇具有不同的脂质组成,这表明 Ras 蛋白参与了同种型选择性的脂质分选,并解释了不同 Ras 同种型产生不同信号输出的原因。磷脂酰丝氨酸是所有 Ras 纳米簇的常见成分,但只是 K-Ras 纳米簇的必需结构成分。K-Ras 和 H-Ras 分离成空间和组成上不同的脂质组装体,对质膜磷脂酰丝氨酸水平非常敏感。Ras 纳米簇的形成也会改变磷脂酰丝氨酸的空间组织。因此,Ras 纳米簇进行远程脂质介导的通讯,其中激活的 H-Ras 破坏了空间分隔的 K-Ras 纳米簇的组装和操作。计算建模和实验表明, caveolin 和皮质肌动蛋白对 Ras 纳米簇形成的复杂影响也是通过调节磷脂酰丝氨酸的时空动力学来介导的。我们得出结论,磷脂酰丝氨酸维持了质膜上多种基于脂质的组装体的横向分离,而空间上远程的脂质组装体之间的横向连接为信号整合和信号处理提供了以前未被探索的重要机会。

相似文献

1
Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters.
Mol Cell Biol. 2014 Mar;34(5):862-76. doi: 10.1128/MCB.01227-13. Epub 2013 Dec 23.
2
Ras nanoclusters: Versatile lipid-based signaling platforms.
Biochim Biophys Acta. 2015 Apr;1853(4):841-9. doi: 10.1016/j.bbamcr.2014.09.008. Epub 2014 Sep 16.
3
RAS nanoclusters are cell surface transducers that convert extracellular stimuli to intracellular signalling.
FEBS Lett. 2023 Mar;597(6):892-908. doi: 10.1002/1873-3468.14569. Epub 2023 Jan 18.
4
Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane.
J Biol Chem. 2012 May 11;287(20):16586-95. doi: 10.1074/jbc.M112.348490. Epub 2012 Mar 19.
5
Super-Resolution Imaging and Spatial Analysis of RAS on Intact Plasma Membrane Sheets.
Methods Mol Biol. 2021;2262:217-232. doi: 10.1007/978-1-0716-1190-6_12.
6
Lipid Profiles of RAS Nanoclusters Regulate RAS Function.
Biomolecules. 2021 Sep 30;11(10):1439. doi: 10.3390/biom11101439.
7
Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling.
J Cell Biol. 2014 Mar 3;204(5):777-92. doi: 10.1083/jcb.201307055. Epub 2014 Feb 24.
8
Raf inhibitors target ras spatiotemporal dynamics.
Curr Biol. 2012 Jun 5;22(11):945-55. doi: 10.1016/j.cub.2012.03.067. Epub 2012 May 3.
9
Ras and the Plasma Membrane: A Complicated Relationship.
Cold Spring Harb Perspect Med. 2018 Oct 1;8(10):a031831. doi: 10.1101/cshperspect.a031831.
10
Deciphering lipid codes: K-Ras as a paradigm.
Traffic. 2018 Mar;19(3):157-165. doi: 10.1111/tra.12541. Epub 2017 Dec 10.

引用本文的文献

1
ELOVL6 activity attenuation induces mutant KRAS degradation.
Nat Chem Biol. 2025 Sep 15. doi: 10.1038/s41589-025-01998-x.
2
Single-molecule imaging quantifies oncogenic KRAS dynamics for enhanced accuracy of therapeutic efficacy assessment.
iScience. 2025 Aug 14;28(9):113374. doi: 10.1016/j.isci.2025.113374. eCollection 2025 Sep 19.
3
Loss of lipid asymmetry facilitates plasma membrane blebbing by decreasing membrane lipid packing.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2417145122. doi: 10.1073/pnas.2417145122. Epub 2025 May 5.
5
KRas4b-Calmodulin Interaction with Membrane Surfaces: Role of Headgroup, Acyl Chain, and Electrostatics.
Biochemistry. 2024 Nov 5;63(21):2740-2749. doi: 10.1021/acs.biochem.4c00116. Epub 2024 Oct 9.
6
Natural Product Graveoline Modulates Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) Membrane Association: Insights from Advanced Spectroscopic Studies.
ACS Pharmacol Transl Sci. 2024 Jul 1;7(7):1983-1995. doi: 10.1021/acsptsci.4c00075. eCollection 2024 Jul 12.
7
RAS and SHOC2 Roles in RAF Activation and Therapeutic Considerations.
Annu Rev Cancer Biol. 2024 Jun;8:97-113. doi: 10.1146/annurev-cancerbio-062822-030450. Epub 2023 Dec 5.
8
Lysophosphatidylcholine acyltransferase 1 suppresses nanoclustering and function of KRAS.
bioRxiv. 2024 Jun 2:2024.05.30.596653. doi: 10.1101/2024.05.30.596653.
10
RAS G-domains allosterically contribute to the recognition of lipid headgroups and acyl chains.
J Cell Biol. 2024 May 6;223(5). doi: 10.1083/jcb.202307121. Epub 2024 Feb 9.

本文引用的文献

1
Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling.
J Cell Biol. 2014 Mar 3;204(5):777-92. doi: 10.1083/jcb.201307055. Epub 2014 Feb 24.
2
Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission.
Mol Cell Biol. 2013 Jan;33(2):237-51. doi: 10.1128/MCB.00884-12. Epub 2012 Nov 5.
3
Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins.
J Biol Chem. 2012 Dec 21;287(52):43573-84. doi: 10.1074/jbc.M112.424457. Epub 2012 Nov 2.
4
Co-regulation of cell polarization and migration by caveolar proteins PTRF/Cavin-1 and caveolin-1.
PLoS One. 2012;7(8):e43041. doi: 10.1371/journal.pone.0043041. Epub 2012 Aug 13.
5
Impaired retrograde membrane traffic through endosomes in a mutant CHO cell defective in phosphatidylserine synthesis.
Genes Cells. 2012 Aug;17(8):728-36. doi: 10.1111/j.1365-2443.2012.01622.x. Epub 2012 Jul 2.
6
PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity.
Science. 2012 Aug 10;337(6095):727-30. doi: 10.1126/science.1222483. Epub 2012 Jun 21.
8
A comprehensive survey of Ras mutations in cancer.
Cancer Res. 2012 May 15;72(10):2457-67. doi: 10.1158/0008-5472.CAN-11-2612.
9
Phosphatidylserine dynamics in cellular membranes.
Mol Biol Cell. 2012 Jun;23(11):2198-212. doi: 10.1091/mbc.E11-11-0936. Epub 2012 Apr 11.
10
Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane.
J Biol Chem. 2012 May 11;287(20):16586-95. doi: 10.1074/jbc.M112.348490. Epub 2012 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验