Lee Ki-Young
Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 11160, Gyeonggi-Do, Republic of Korea.
Int J Mol Sci. 2024 Feb 21;25(5):2530. doi: 10.3390/ijms25052530.
Transient homo-dimerization of the RAS GTPase at the plasma membrane has been shown to promote the mitogen-activated protein kinase (MAPK) signaling pathway essential for cell proliferation and oncogenesis. To date, numerous crystallographic studies have focused on the well-defined GTPase domains of RAS isoforms, which lack the disordered C-terminal membrane anchor, thus providing limited structural insight into membrane-bound RAS molecules. Recently, lipid-bilayer nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses have revealed several distinct structures of the membrane-anchored homodimers of KRAS, an isoform that is most frequently mutated in human cancers. The KRAS dimerization interface is highly plastic and altered by biologically relevant conditions, including oncogenic mutations, the nucleotide states of the protein, and the lipid composition. Notably, PRE-derived structures of KRAS homodimers on the membrane substantially differ in terms of the relative orientation of the protomers at an "α-α" dimer interface comprising two α4-α5 regions. This interface plasticity along with the altered orientations of KRAS on the membrane impact the accessibility of KRAS to downstream effectors and regulatory proteins. Further, nanodisc platforms used to drive KRAS dimerization can be used to screen potential anticancer drugs that target membrane-bound RAS dimers and probe their structural mechanism of action.
RAS GTP酶在质膜上的瞬时同源二聚化已被证明可促进细胞增殖和肿瘤发生所必需的丝裂原活化蛋白激酶(MAPK)信号通路。迄今为止,众多晶体学研究聚焦于RAS亚型明确的GTP酶结构域,这些结构域缺乏无序的C末端膜锚定区,因此对膜结合RAS分子的结构洞察有限。最近,脂质双层纳米盘平台和顺磁弛豫增强(PRE)分析揭示了KRAS膜锚定同源二聚体的几种不同结构,KRAS是一种在人类癌症中最常发生突变的亚型。KRAS二聚化界面具有高度可塑性,并会因生物学相关条件而改变,包括致癌突变、蛋白质的核苷酸状态和脂质组成。值得注意的是,膜上KRAS同源二聚体的PRE衍生结构在由两个α4-α5区域组成的“α-α”二聚体界面处,原聚体的相对取向有很大差异。这种界面可塑性以及KRAS在膜上的取向改变,影响了KRAS与下游效应器和调节蛋白的可及性。此外,用于驱动KRAS二聚化的纳米盘平台可用于筛选靶向膜结合RAS二聚体的潜在抗癌药物,并探究其结构作用机制。