Suppr超能文献

≥34 周胎龄新生儿早发性脓毒症风险分层。

Stratification of risk of early-onset sepsis in newborns ≥ 34 weeks' gestation.

机构信息

Regional Director for Hospital Operations Research, Kaiser Permanente Northern California, Division of Research, 2000 Broadway Ave, Oakland, CA 94612.

出版信息

Pediatrics. 2014 Jan;133(1):30-6. doi: 10.1542/peds.2013-1689. Epub 2013 Dec 23.

Abstract

OBJECTIVE

To define a quantitative stratification algorithm for the risk of early-onset sepsis (EOS) in newborns ≥ 34 weeks' gestation.

METHODS

We conducted a retrospective nested case-control study that used split validation. Data collected on each infant included sepsis risk at birth based on objective maternal factors, demographics, specific clinical milestones, and vital signs during the first 24 hours after birth. Using a combination of recursive partitioning and logistic regression, we developed a risk classification scheme for EOS on the derivation dataset. This scheme was then applied to the validation dataset.

RESULTS

Using a base population of 608,014 live births ≥ 34 weeks' gestation at 14 hospitals between 1993 and 2007, we identified all 350 EOS cases <72 hours of age and frequency matched them by hospital and year of birth to 1063 controls. Using maternal and neonatal data, we defined a risk stratification scheme that divided the neonatal population into 3 groups: treat empirically (4.1% of all live births, 60.8% of all EOS cases, sepsis incidence of 8.4/1000 live births), observe and evaluate (11.1% of births, 23.4% of cases, 1.2/1000), and continued observation (84.8% of births, 15.7% of cases, incidence 0.11/1000).

CONCLUSIONS

It is possible to combine objective maternal data with evolving objective neonatal clinical findings to define more efficient strategies for the evaluation and treatment of EOS in term and late preterm infants. Judicious application of our scheme could result in decreased antibiotic treatment in 80,000 to 240,000 US newborns each year.

摘要

目的

为≥34 周胎龄的新生儿制定一个用于预测早发性败血症(EOS)风险的定量分层算法。

方法

我们进行了一项回顾性巢式病例对照研究,采用分割验证。对每个婴儿的数据采集包括基于客观产妇因素、人口统计学特征、特定临床里程碑和出生后 24 小时内生命体征的出生时败血症风险。使用递归分区和逻辑回归的组合,我们在推导数据集上开发了 EOS 的风险分类方案。然后将该方案应用于验证数据集。

结果

使用 1993 年至 2007 年间 14 家医院的≥34 周胎龄的 608014 例活产儿的基础人群,我们确定了所有 350 例年龄<72 小时的 EOS 病例,并按医院和出生年份与 1063 例对照进行频数匹配。使用产妇和新生儿数据,我们定义了一个风险分层方案,将新生儿人群分为 3 组:经验性治疗(所有活产儿的 4.1%,所有 EOS 病例的 60.8%,活产儿的败血症发病率为 8.4/1000)、观察和评估(出生的 11.1%,病例的 23.4%,发病率为 1.2/1000)和继续观察(出生的 84.8%,病例的 15.7%,发病率为 0.11/1000)。

结论

将客观产妇数据与不断变化的客观新生儿临床发现相结合,有可能为足月和晚期早产儿的 EOS 评估和治疗制定更有效的策略。明智地应用我们的方案可以使每年在美国有 8 万至 24 万新生儿减少抗生素治疗。

相似文献

7
Antibiotic Use in Late Preterm and Full-Term Newborns.晚期早产儿和足月新生儿的抗生素使用。
JAMA Netw Open. 2024 Mar 4;7(3):e243362. doi: 10.1001/jamanetworkopen.2024.3362.
8
Value of a single C-reactive protein measurement at 18 h of age.18 小时龄时单个 C 反应蛋白测量值的价值。
Arch Dis Child Fetal Neonatal Ed. 2014 Jan;99(1):F76-9. doi: 10.1136/archdischild-2013-303984. Epub 2013 Sep 5.

引用本文的文献

3
Consequences of host-microbiome interactions in preterm infants.早产儿宿主-微生物组相互作用的后果。
Infect Immun. 2025 Sep 9;93(9):e0050124. doi: 10.1128/iai.00501-24. Epub 2025 Aug 11.
6
Neonatal Sepsis: A Comprehensive Review.新生儿败血症:全面综述
Antibiotics (Basel). 2024 Dec 25;14(1):6. doi: 10.3390/antibiotics14010006.

本文引用的文献

2
Choriophobia: a 1-act play.恐孕症:独幕剧。
Pediatrics. 2012 Aug;130(2):342-6. doi: 10.1542/peds.2012-0106. Epub 2012 Jul 9.
9
Early and late onset sepsis in late preterm infants.晚期早产儿早发和晚发败血症。
Pediatr Infect Dis J. 2009 Dec;28(12):1052-6. doi: 10.1097/inf.0b013e3181acf6bd.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验