Condensed Matter Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):69-74. doi: 10.1073/pnas.1322239111. Epub 2013 Dec 23.
Molecular contacts are generally poorly conducting because their energy levels tend to lie far from the Fermi energy of the metal contact, necessitating undesirably large gate and bias voltages in molecular electronics applications. Molecular radicals are an exception because their partly filled orbitals undergo Kondo screening, opening the way to electron passage even at zero bias. Whereas that phenomenon has been experimentally demonstrated for several complex organic radicals, quantitative theoretical predictions have not been attempted so far. It is therefore an open question whether and to what extent an ab initio-based theory is able to make accurate predictions for Kondo temperatures and conductance lineshapes. Choosing nitric oxide (NO) as a simple and exemplary spin 1/2 molecular radical, we present calculations based on a combination of density functional theory and numerical renormalization group (DFT+NRG), predicting a zero bias spectral anomaly with a Kondo temperature of 15 K for NO/Au(111). A scanning tunneling spectroscopy study is subsequently carried out to verify the prediction, and a striking zero bias Kondo anomaly is confirmed, still quite visible at liquid nitrogen temperatures. Comparison shows that the experimental Kondo temperature of about 43 K is larger than the theoretical one, whereas the inverted Fano lineshape implies a strong source of interference not included in the model. These discrepancies are not a surprise, providing in fact an instructive measure of the approximations used in the modeling, which supports and qualifies the viability of the density functional theory and numerical renormalization group approach to the prediction of conductance anomalies in larger molecular radicals.
分子接触通常导电性较差,因为它们的能级往往远离金属接触的费米能,这在分子电子学应用中需要不希望的大栅极和偏置电压。分子自由基是一个例外,因为它们部分填充的轨道经历了康登屏蔽,即使在零偏压下也为电子通过开辟了道路。虽然这种现象已经在几种复杂的有机自由基中得到了实验证明,但到目前为止还没有尝试进行定量理论预测。因此,一个悬而未决的问题是,基于从头算的理论是否能够准确预测康登温度和电导线形状,以及在何种程度上能够准确预测。选择一氧化氮(NO)作为简单和典型的自旋 1/2 分子自由基,我们提出了基于密度泛函理论和数值重整化群(DFT+NRG)相结合的计算,预测了 NO/Au(111) 的零偏压谱异常,其康登温度为 15 K。随后进行了扫描隧道光谱学研究来验证预测,并证实了引人注目的零偏压康登异常,即使在液氮温度下仍然非常明显。比较表明,实验得到的约 43 K 的康登温度大于理论值,而反 Fano 线形状意味着模型中未包含的强烈干扰源。这些差异并不令人惊讶,实际上为模型中使用的近似值提供了一个有益的衡量标准,支持和证明了密度泛函理论和数值重整化群方法在预测更大分子自由基中的电导异常方面的可行性。