Synthetic Chemistry Lab., Kawamura Institute of Chemical Research, 631 Sakado, Sakura, 285-0078, Japan.
Department of Material and Life Chemistry, Kanagawa University, and JST-CREST 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
Beilstein J Nanotechnol. 2013 Nov 25;4:793-804. doi: 10.3762/bjnano.4.90. eCollection 2013.
This paper describes a facile approach to a biomimetic rapid fabrication of ultrathin silica nanotubes with a highly uniform diameter of 10 nm and inner hollow of around 3 nm. The synthesis is carried out through a spontaneous polycondensation of alkoxysilane on polyamine crystalline fibrils that were conveniently produced from the neutralization of a solution of protonated linear polyethyleneimine (LPEI-H(+)) by alkali compounds. A simple mixing the fibrils with alkoxysilane in aqueous solution allowed for the rapid formation of silica to produce LPEI@silica hybrid nanotubes. These 10-nm nanotubes were hierarchically organized in a mat-like morphology with a typical size of 1-2 micrometers. The subsequent removal of organic LPEI via calcination resulted in silica nanotubes that keep this morphology. The morphology, the structure, the pore properties and the formation mechanism of the silica nanotubes were carefully investigated with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller measurements (BET), and X-ray diffraction (XRD). Detailed studies demonstrated that the formation of the nanotubes depends on the molar ratio of [OH]/[CH2CH2NH] during the neutralization as well as on the basicity of the alkali compound and on the concentration of the silica source. The synthesis of silica nanotubes established here could be easily applied to a fabrication on the kilogram scale. Silica nanotubes that were obtained from the calcination of hybrid nanotubes of LPEI@silica in an N2 atmosphere showed a distinct photoluminescence centered at 540 nm with a maximum excitation wavelength of 320 nm. Furthermore, LPEI@silica hybrid nanotubes were applied to create silica-carbon composite nanotubes by alternative adsorption of ionic polymers and subsequent carbonization.
本文介绍了一种简便的仿生快速制备具有 10nm 均匀直径和 3nm 左右内中空的超薄二氧化硅纳米管的方法。该合成是通过烷氧基硅烷在聚胺晶体纤维上的自发缩聚来实现的,这些纤维是通过质子化线性聚乙烯亚胺(LPEI-H(+))溶液与碱化合物中和方便地制备的。将纤维与烷氧基硅烷简单地混合在水溶液中,可以快速形成二氧化硅,从而产生 LPEI@二氧化硅杂化纳米管。这些 10nm 纳米管在类似毡的形态中呈层次状排列,典型尺寸为 1-2 微米。通过煅烧去除有机 LPEI 后,得到保持这种形态的二氧化硅纳米管。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、BET 测量(BET)和 X 射线衍射(XRD)仔细研究了二氧化硅纳米管的形态、结构、孔性质和形成机制。详细研究表明,纳米管的形成取决于中和过程中[OH]/[CH2CH2NH]的摩尔比,以及碱化合物的碱性和二氧化硅源的浓度。这里建立的二氧化硅纳米管的合成可以很容易地应用于公斤级的制备。在 N2 气氛下,通过煅烧 LPEI@二氧化硅杂化纳米管获得的二氧化硅纳米管在 540nm 处显示出明显的光致发光,最大激发波长为 320nm。此外,LPEI@二氧化硅杂化纳米管通过离子聚合物的交替吸附和随后的碳化被应用于制备二氧化硅-碳复合纳米管。