Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, Delaware 19716, USA.
ACS Nano. 2010 Jan 26;4(1):181-8. doi: 10.1021/nn901226h.
Self-assembly represents a robust and powerful paradigm for the bottom-up construction of nanostructures. Templated condensation of silica precursors on self-assembled nanoscale peptide fibrils with various surface functionalities can be used to mimic biosilicification. This template-defined approach toward biomineralization was utilized for the controlled fabrication of 3D hybrid nanostructures. The peptides MAX1 and MAX8 used herein form networks consisting of interconnected, self-assembled beta-sheet fibrils. We report a study on the structure--property relationship of self-assembled peptide hydrogels where mineralization of individual fibrils through sol--gel chemistry was achieved. The nanostructure and consequent mechanical characteristics of these hybrid networks can be modulated by changing the stoichiometric parameters of the sol--gel process. The physical characterization of the hybrid networks via electron microscopy and small-angle scattering is detailed and correlated with changes in the network mechanical behavior. The resultant high fidelity templating process suggests that the peptide substrate can be used to template the coating of other functional inorganic materials.
自组装代表了一种强大的、自下而上构建纳米结构的范式。在具有各种表面功能的自组装纳米级肽原纤维上进行硅前体的模板缩合,可以用来模拟生物硅化。这种模板定义的生物矿化方法被用于控制 3D 混合纳米结构的制造。本文中使用的肽 MAX1 和 MAX8 形成由相互连接的自组装β-折叠原纤维组成的网络。我们报告了对自组装肽水凝胶结构-性能关系的研究,其中通过溶胶-凝胶化学实现了单个原纤维的矿化。通过改变溶胶-凝胶过程的化学计量参数,可以调节这些混合网络的纳米结构和相应的机械特性。通过电子显微镜和小角散射对混合网络进行了详细的物理特性表征,并与网络机械性能的变化相关联。高保真模板化过程表明,肽底物可用于模板化其他功能无机材料的涂层。