Dunican Donncha S, Cruickshanks Hazel A, Suzuki Masako, Semple Colin A, Davey Tracey, Arceci Robert J, Greally John, Adams Ian R, Meehan Richard R
Genome Biol. 2013 Dec 24;14(12):R146. doi: 10.1186/gb-2013-14-12-r146.
DNA methylation contributes to genomic integrity by suppressing repeat-associated transposition. In addition to the canonical DNA methyltransferases, several auxiliary chromatin factors are required to maintain DNA methylation at intergenic and satellite repeats. The interaction between Lsh, a chromatin helicase, and the de novo methyltransferase Dnmt3b facilitates deposition of DNA methylation at stem cell genes, which are hypomethylated in Lsh-/- embryos. We wished to determine if a similar targeting mechanism operates to maintain DNA methylation at repetitive sequences.
We mapped genome-wide DNA methylation patterns in Lsh-/- and Dnmt3b-/- somatic cells. DNA methylation is predominantly lost from specific genomic repeats in Lsh-/- cells: LTR -retrotransposons, LINE-1 repeats and mouse satellites. RNA-seq experiments demonstrate that specific IAP LTRs and satellites, but not LINE-1 elements, are aberrantly transcribed in Lsh-/- cells. LTR hypomethylation in Dnmt3b-/- cells is moderate, whereas IAP, LINE-1 and satellite elements are hypomethylated but silent. Repressed LINE-1 elements in Lsh-/- cells gain H3K4me3, but H3K9me3 levels are unaltered, indicating that DNA hypomethylation alone is not permissive for their transcriptional activation. Mis-expressed IAPs and satellites lose H3K9me3 and gain H3K4me3 in Lsh-/- cells.
Our study emphasizes that regulation of repetitive elements by Lsh and DNA methylation is selective and context dependent. Silencing of repeats in somatic cells appears not to be critically dependent on Dnmt3b function. We propose a model where Lsh is specifically required at a precise developmental window to target de novo methylation to repeat sequences, which is subsequently maintained by Dnmt1 to enforce selective repeat silencing.
DNA甲基化通过抑制重复序列相关的转座作用来维持基因组完整性。除了典型的DNA甲基转移酶外,还需要几种辅助染色质因子来维持基因间和卫星重复序列处的DNA甲基化。染色质解旋酶Lsh与从头甲基转移酶Dnmt3b之间的相互作用促进了干细胞基因处DNA甲基化的沉积,而这些基因在Lsh基因敲除的胚胎中是低甲基化的。我们希望确定是否存在类似的靶向机制来维持重复序列处的DNA甲基化。
我们绘制了Lsh基因敲除和Dnmt3b基因敲除的体细胞全基因组DNA甲基化模式。DNA甲基化在Lsh基因敲除的细胞中主要从特定的基因组重复序列中丢失:长末端重复序列(LTR)逆转座子、LINE-1重复序列和小鼠卫星序列。RNA测序实验表明,特定的内源性逆转录病毒(IAP)LTR和卫星序列,但不是LINE-1元件,在Lsh基因敲除的细胞中异常转录。Dnmt3b基因敲除细胞中的LTR低甲基化程度适中,而IAP、LINE-1和卫星元件则低甲基化但沉默。Lsh基因敲除细胞中受抑制的LINE-1元件获得了H3K4me3,但H3K9me3水平未改变,这表明仅DNA低甲基化不足以使其转录激活。在Lsh基因敲除的细胞中,错误表达的IAP和卫星序列失去了H3K9me3并获得了H3K4me3。
我们的研究强调,Lsh和DNA甲基化对重复元件的调控具有选择性且依赖于背景。体细胞中重复序列的沉默似乎并不关键地依赖于Dnmt3b的功能。我们提出了一个模型,即在精确的发育窗口中特别需要Lsh将从头甲基化靶向重复序列,随后由Dnmt1维持以强制选择性重复序列沉默。